Dynamics Of Mechanical And Electromechanical Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dynamics Of Mechanical And Electromechanical Systems PDF full book. Access full book title Dynamics Of Mechanical And Electromechanical Systems.

Dynamics of Mechanical and Electromechanical Systems

Dynamics of Mechanical and Electromechanical Systems
Author: Stephen H. Crandall
Publisher:
Total Pages: 466
Release: 2017
Genre: Dynamics
ISBN: 9789385998751

Download Dynamics of Mechanical and Electromechanical Systems Book in PDF, ePub and Kindle

"This edition of the book not only covers the classical concepts of dynamics of mechanical and electromechanical systems but also details the modern day applications of the explained theories and concepts. The text has been designed to fit the present day needs of readers in understanding the fundamental principles of dynamics and exploring its applications in sophisticated systems of engineering interest that may also be experienced in variety of aspects in daily life."--Publisher description.


Mechatronics

Mechatronics
Author: A. Preumont
Publisher: Springer Science & Business Media
Total Pages: 200
Release: 2006-09-09
Genre: Science
ISBN: 1402046960

Download Mechatronics Book in PDF, ePub and Kindle

This volume treats Lagrange equations for electromechanical systems, including piezoelectric transducers and selected applications. It is essentially an extension to piezoelectric systems of the work by Crandall et al.:"Dynamics of Mechanical and Electromechanical Systems", published in 1968. The first three chapters contain classical material based on this and other well known standard texts in the field. Some applications are new and include material not published in a monograph before.


Dynamics and Control of Electrical Drives

Dynamics and Control of Electrical Drives
Author: Wach Piotr
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 2011-04-28
Genre: Technology & Engineering
ISBN: 3642202225

Download Dynamics and Control of Electrical Drives Book in PDF, ePub and Kindle

Dynamics is a science concerned with movement and changes. In the most general approach it relates to life processes as well as behavior in nature in rest. It governs small particles, technical objects, conversion of matter and materials but also concerns people, groups of people in their individual and, in particular, social dimension. In dynamics we always have to do with causes or stimuli for motion, the rules of reaction or behavior and its result in the form of trajectory of changes. This book is devoted to dynamics of a wide class of specific but very important objects such as electromechanical systems. This is a very rigorous discipline and has a long tradition, as its theoretical bases were formulated in the first half of the XIX century by d’ Alembert, Lagrange, Hamilton, Maxwell and other prominent scientists, but their crucial results were based on previous pioneering research of others such as Copernicus, Galileo, Newton... This book in its theoretical foundations is based on the principle of least action which governs classical as well as relativistic mechanics and electromagnetism and leads to Lagrange’s equations which are applied in the book as universal method to construct equations of motion of electromechanical systems. It gives common and coherent grounds to formulate mathematical models for all lumped parameters’ electromechanical systems, which are vital in our contemporary industry and civilized everyday life. From these remarks it seems that the book is general and theoretical but in fact it is a very practical one concerning modern electrical drives in a broad sense, including electromechanical energy conversion, induction motor drives, brushless DC drives with a permanent magnet excitation and switched reluctance machines (SRM). And of course their control, which means shaping of their trajectories of motion using modern tools, their designed autonomy in keeping a track according to our programmed expectations. The problems presented in the book are widely illustrated by characteristics, trajectories, dynamic courses all computed by use of developed simulation models throughout the book. There are some classical subjects and the history of the discipline is discussed but finally all modern tools and means are presented and applied. More detailed descriptions follow in abstracts for the particular chapters. The author hopes kind readers will enjoy and profit from reading this book.


Electromechanical Systems in Microtechnology and Mechatronics

Electromechanical Systems in Microtechnology and Mechatronics
Author: Arno Lenk
Publisher: Springer Science & Business Media
Total Pages: 483
Release: 2010-10-01
Genre: Technology & Engineering
ISBN: 3642108067

Download Electromechanical Systems in Microtechnology and Mechatronics Book in PDF, ePub and Kindle

Electromechanical systems consisting of electrical, mechanical and acoustic subsystems are of special importance in various technical fields, e.g. precision device engineering, sensor and actuator technology, electroacoustics and medical engineering. Based on a circuit-oriented representation, providing readers with a descriptive engineering design method for these systems is the goal of this textbook. It offers an easy and fast introduction to mechanical, acoustic, fluid, thermal and hydraulic problems through the application of circuit-oriented basic knowledge. The network description methodology, presented in detail, is extended to finite network elements and combined with the finite element method (FEM): the combination of the advantages of both description methods results in novel approaches, especially in the higher frequency range. The book offers numerous current examples of both the design of sensors and actuators and that of direct coupled sensor-actuator systems. The appendix provides more extensive fundamentals for signal description, as well as a compilation of important material characteristics. The textbook is suitable both for graduate students and for engineers working in the fields of electrical engineering, information technology, mechatronics, microtechnology, and mechanical and medical engineering.


System Dynamics for Mechanical Engineers

System Dynamics for Mechanical Engineers
Author: Matthew Davies
Publisher: Springer
Total Pages: 396
Release: 2014-11-05
Genre: Technology & Engineering
ISBN: 1461492939

Download System Dynamics for Mechanical Engineers Book in PDF, ePub and Kindle

This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: · Reinforces the connection between the subject matter and engineering reality · Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements · Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high-speed manufacturing equipment, and measurement systems · Incorporates MATLAB® programming examples throughout the text · Incorporates MATLAB® examples that animate the dynamics of systems


Mechatronics

Mechatronics
Author: A. Preumont
Publisher: Springer
Total Pages: 0
Release: 2006-08-10
Genre: Technology & Engineering
ISBN: 9781402046957

Download Mechatronics Book in PDF, ePub and Kindle

This volume treats Lagrange equations for electromechanical systems, including piezoelectric transducers and selected applications. It is essentially an extension to piezoelectric systems of the work by Crandall et al.:"Dynamics of Mechanical and Electromechanical Systems", published in 1968. The first three chapters contain classical material based on this and other well known standard texts in the field. Some applications are new and include material not published in a monograph before.


Sliding Mode Control in Electro-Mechanical Systems

Sliding Mode Control in Electro-Mechanical Systems
Author: Vadim Utkin
Publisher: CRC Press
Total Pages: 503
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 1420065610

Download Sliding Mode Control in Electro-Mechanical Systems Book in PDF, ePub and Kindle

Apply Sliding Mode Theory to Solve Control Problems Interest in SMC has grown rapidly since the first edition of this book was published. This second edition includes new results that have been achieved in SMC throughout the past decade relating to both control design methodology and applications. In that time, Sliding Mode Control (SMC) has continued to gain increasing importance as a universal design tool for the robust control of linear and nonlinear electro-mechanical systems. Its strengths result from its simple, flexible, and highly cost-effective approach to design and implementation. Most importantly, SMC promotes inherent order reduction and allows for the direct incorporation of robustness against system uncertainties and disturbances. These qualities lead to dramatic improvements in stability and help enable the design of high-performance control systems at low cost. Written by three of the most respected experts in the field, including one of its originators, this updated edition of Sliding Mode Control in Electro-Mechanical Systems reflects developments in the field over the past decade. It builds on the solid fundamentals presented in the first edition to promote a deeper understanding of the conventional SMC methodology, and it examines new design principles in order to broaden the application potential of SMC. SMC is particularly useful for the design of electromechanical systems because of its discontinuous structure. In fact, where the hardware of many electromechanical systems (such as electric motors) prescribes discontinuous inputs, SMC becomes the natural choice for direct implementation. This book provides a unique combination of theory, implementation issues, and examples of real-life applications reflective of the authors’ own industry-leading work in the development of robotics, automobiles, and other technological breakthroughs.