Dusty Star Forming Galaxies And Their Environments PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dusty Star Forming Galaxies And Their Environments PDF full book. Access full book title Dusty Star Forming Galaxies And Their Environments.

Dusty Star-forming Galaxies Within High-redshift Galaxy Clusters

Dusty Star-forming Galaxies Within High-redshift Galaxy Clusters
Author: Allison Noble
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download Dusty Star-forming Galaxies Within High-redshift Galaxy Clusters Book in PDF, ePub and Kindle

"We present a multi-wavelength perspective of star-forming galaxies within high-redshift galaxy clusters. The clusters derive from the Red-sequence Cluster Survey (RCS) and the Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS), and possess ample spectroscopic coverage, yielding numerous confirmed cluster members. This thesis consists of a collection of distinct but related works, focusing on environmental effects within the dense regions of clusters---some of the rarest structures in the Universe. We exploit the high sensitivities of cutting-edge infrared and submillimeter telescopes to glean the wealth of information encoded within the thermal portion of the spectral energy distribution, including infrared luminosities and dust temperatures. This allows us to uncover various trends within the star-forming population as a function of environment. Moreover, we develop a novel definition of environment, based on the phase space of radius and velocity, to account for the various accretion histories of galaxies onto clusters; it thereby probes the time-averaged density that each galaxy population has experienced. Using this tracer of environment, we find a significant depression in the star formation rate per unit stellar mass for star-forming galaxies within cluster cores at z~0.9 and z~1.2, in contrast to the flat trend that results from conventional definitions of environment. We also discover a population of galaxies that have lower dust temperatures compared to both infalling galaxies and those that were accreted at the earliest stages of the formation of the cluster. Taken together, these trends in star formation rate and dust temperature can help elucidate which, if any, quenching mechanisms are active within cluster environments. Finally, we report the serendipitous detection of an overdensity of submillimeter-bright galaxies located behind a merging z~0.9 supercluster, which could signify a highly star-forming protocluster at z~3." --


Dusty Star Formation in Extreme Environments

Dusty Star Formation in Extreme Environments
Author: Stacey L. Alberts
Publisher:
Total Pages: 204
Release: 2014
Genre:
ISBN:

Download Dusty Star Formation in Extreme Environments Book in PDF, ePub and Kindle

In this thesis, we present a comprehensive study of the dust-obscured star formation (SF) activity in galaxy clusters out to high redshift using infrared (IR) imaging. Using hundreds of galaxy clusters and wide-field far-IR imaging across nine square degrees, we quantify the average star formation rates (SFRs) out to the distant Universe for mass-limited cluster galaxy samples using stacking. We compare the evolution of this SF activity to field galaxies, finding that the evolution in clusters occurs more rapidly than in the field and clusters have field-like SF approximately nine billion years ago, during an epoch before SF quenching becomes effective in massive clusters. Building on this result, we present new, deep far-IR imaging of 11 spectroscopically-confirmed clusters at high redshift, which allows us to examine the SFRs of individual IR-luminous cluster galaxies as a function of environment. We find a transition from field-like SF to quenching of IR-luminous galaxies in the cluster cores over the redshift range probed. We present the first UV-to-far-IR spectral energy distributions (SEDs) of high redshift cluster galaxies, quantify the cluster-to-cluster variations in SF properties, and compare cluster galaxies to star forming galaxies in the field. In addition, we examine the SEDs of cluster galaxies with measurable emission from black hole accretion and quantify the fraction of these galaxies as a function of environment and redshift, finding an excess at high redshift in the cluster cores. Lastly, we compare dust-obscured SFRs from far-IR to unobscured SFRs from optical emission lines. In the last section, we present new submillimeter imaging of a massive cluster in the distant Universe. We characterize the FIR/submillimeter SED of IR-luminous cluster galaxies, finding dust temperatures similar to that in field galaxies in the same epoch. We use imaging of dust emission in the optically thin regime to derive the interstellar medium (ISM) masses of cluster galaxies. Through this analysis, we determine that IR-luminous cluster galaxies at high redshift have comparable ISM masses, gas fractions, and gas depletion timescales as field galaxies.


The Nature of Dusty Star-Forming Galaxies

The Nature of Dusty Star-Forming Galaxies
Author: William Cowley
Publisher: Springer
Total Pages: 221
Release: 2017-10-02
Genre: Science
ISBN: 3319667483

Download The Nature of Dusty Star-Forming Galaxies Book in PDF, ePub and Kindle

This thesis combines a theoretical model of galaxy formation with a treatment of the radiative transfer in the titular dusty star-forming galaxies. Embedding this within the well-established ΛCDM (Lambda cold dark matter) cosmology, the author was able to simulate galaxy populations from which realistic observational images were synthesised. Based on further analysis, he shows that there is a good correspondence with observations from new instruments such as the SCUBA2 bolometric camera and the Atacama Large Millimeter Array (ALMA) interferometer, and reveals some novel aspects of this exciting galaxy population. In particular, he shows that blending of these galaxies in the imaging produces an artificial enhancement in their clustering, which he dubs “blending bias”. This implies that the host dark matter halo masses for these galaxies have previously been significantly overestimated. He also presents amongst the first predictions from a galaxy formation model for observations of these galaxies that will be made by the James Webb Space Telescope (the successor to the Hubble Space Telescope).


Star-Formation Rates of Galaxies

Star-Formation Rates of Galaxies
Author: Andreas Zezas
Publisher: Cambridge University Press
Total Pages: 318
Release: 2021-04-29
Genre: Science
ISBN: 1316877523

Download Star-Formation Rates of Galaxies Book in PDF, ePub and Kindle

Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.


From Dusty to Dust-free

From Dusty to Dust-free
Author: Logan Houston Jones
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

Download From Dusty to Dust-free Book in PDF, ePub and Kindle

The creation of new stars from cold gas is one of the most fundamental astrophysical processes that can be observed in our own galaxy and in others. At a broad level, the modern phenomenological picture of how stars form is consistent with observations of systems ranging from nearby molecular clouds to the most distant galaxies. Many gaps and limitations in the details of such a picture, however, remain unfilled and unanswered. For example, questions remain about the interplay between star formation and chemical enrichment in blue, metal-poor galaxies and the impact of that relationship in cosmic reionization -- one of the final frontiers of observational extragalactic astrophysics. Meanwhile, on the other end of the electromagnetic and metallicity spectrum, there exists a population of high-redshift, far-infrared-bright, and heavily dust-obscured starbursting galaxies that represent a fleeting but possibly integral stage in the growth of massive galaxies and of dense, large-scale structures like (proto)clusters of galaxies. However, the mechanism(s) that trigger such starbursts, especially in dense environments, remains ambiguous. The research that comprises this dissertation aims to answer two questions that, while both relevant to astronomers' understanding of the birth and evolution of galaxies in the broadest sense, are largely disjoint from one another. These questions are: 1) What are the intermediate- to high-redshift analogs to the sources that reionized the universe at very early times?; and 2) As a function of redshift and/or environment, how common are massively star-forming, dust-obscured galaxies? Because these questions are so different from one another, this dissertation will be split into two major parts. In the first, I present a search in two legacy fields (the GOODS-North and the GOODS-South) for galaxies at high redshift that may be sources of ionizing ultraviolet photons. Such objects are expected to be analogs, in various ways, to the first generation of galaxies, and thus provide clues to the nature of very-high-redshift galaxies that will be discovered en masse by future ground- and space-based observatories. In the second part, I present the spectroscopic confirmation of an overdensity of dusty starbursting galaxies at $z \approx 3.14$, signposting a protocluster of galaxies near the peak of star formation activity in the universe. Compared to similar recent discoveries in the literature, this new protocluster is relatively late-forming and includes several of the most infrared-luminous starbursts currently known. This makes it an excellent laboratory for testing theories of starburst triggering and the subsequent buildup of stellar mass in dense environments. In the final chapter of this dissertation, I reiterate the key results of the research presented in chapters 2, 3, and 5.