Distributed Space Time Coding PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Distributed Space Time Coding PDF full book. Access full book title Distributed Space Time Coding.

Distributed Space-Time Coding

Distributed Space-Time Coding
Author: Yindi Jing
Publisher: Springer Science & Business Media
Total Pages: 118
Release: 2013-04-23
Genre: Technology & Engineering
ISBN: 1461468310

Download Distributed Space-Time Coding Book in PDF, ePub and Kindle

Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.


Space-Time Coding

Space-Time Coding
Author: Hamid Jafarkhani
Publisher: Cambridge University Press
Total Pages: 320
Release: 2005-09-22
Genre: Technology & Engineering
ISBN: 1139444441

Download Space-Time Coding Book in PDF, ePub and Kindle

This book covers the fundamental principles of space-time coding for wireless communications over multiple-input multiple-output (MIMO) channels, and sets out practical coding methods for achieving the performance improvements predicted by the theory. Starting with background material on wireless communications and the capacity of MIMO channels, the book then reviews design criteria for space-time codes. A detailed treatment of the theory behind space-time block codes then leads on to an in-depth discussion of space-time trellis codes. The book continues with discussion of differential space-time modulation, BLAST and some other space-time processing methods and the final chapter addresses additional topics in space-time coding. The theory and practice sections can be used independently of each other. Written by one of the inventors of space-time block coding, this book is ideal for a graduate student familiar with the basics of digital communications, and for engineers implementing the theory in real systems.


Selected Topics In Information And Coding Theory

Selected Topics In Information And Coding Theory
Author: Isaac Woungang
Publisher: World Scientific
Total Pages: 725
Release: 2010-02-26
Genre: Computers
ISBN: 981446919X

Download Selected Topics In Information And Coding Theory Book in PDF, ePub and Kindle

The last few years have witnessed rapid advancements in information and coding theory research and applications. This book provides a comprehensive guide to selected topics, both ongoing and emerging, in information and coding theory. Consisting of contributions from well-known and high-profile researchers in their respective specialties, topics that are covered include source coding; channel capacity; linear complexity; code construction, existence and analysis; bounds on codes and designs; space-time coding; LDPC codes; and codes and cryptography.All of the chapters are integrated in a manner that renders the book as a supplementary reference volume or textbook for use in both undergraduate and graduate courses on information and coding theory. As such, it will be a valuable text for students at both undergraduate and graduate levels as well as instructors, researchers, engineers, and practitioners in these fields.Supporting Powerpoint Slides are available upon request for all instructors who adopt this book as a course text.


Distributed Space Time Block Code in Asynchronous Cooperative Networks

Distributed Space Time Block Code in Asynchronous Cooperative Networks
Author: Mohammed Taha El Astal
Publisher: LAP Lambert Academic Publishing
Total Pages: 100
Release: 2011-05
Genre:
ISBN: 9783844392685

Download Distributed Space Time Block Code in Asynchronous Cooperative Networks Book in PDF, ePub and Kindle

Space- Time Block Coding (STBC) are used to improve the transmission reliably and spectral efficiency of MIMO systems. The cooperative communication techniques can avoid the difficulties of implementing actual antennas array by converting the single-input single-output (SISO) system into a virtual multiple-input multiple-output (MIMO) system. When STBC applied to cooperative diversity the system termed as Distributed Space Time Block Code (D-STBC). Most of the existing research assumes perfect synchronization among cooperative users in D-STBC. Unfortunately, perfect synchronization is almost impossible to be achieved. Therefore, most of the designed space-time codes are no longer valid. There are different research efforts to overcome this problem; most of which has high decoding complexity. In this research, two low decoding complexity schemes for imperfect synchronized D-STBC have been proposed. The first scheme is based on the principle of parallel interference cancellation (PIC), whereas the other is based on successive interference cancellation (SIC). These approaches have been proved to be a very effective in suppressing the impact of imperfect synchronization.


Space-Time Block Coding for Wireless Communications

Space-Time Block Coding for Wireless Communications
Author: Erik G. Larsson
Publisher: Cambridge University Press
Total Pages: 304
Release: 2008-06-12
Genre: Technology & Engineering
ISBN: 9780521065337

Download Space-Time Block Coding for Wireless Communications Book in PDF, ePub and Kindle

Space-time coding is a technique that promises greatly improved performance in wireless networks by using multiple antennas at the transmitter and receiver. Space-Time Block Coding for Wireless Communications is an introduction to the theory of this technology. The authors develop the topic using a unified framework and cover a variety of topics ranging from information theory to performance analysis and state-of-the-art space-time coding methods for both flat and frequency-selective fading multiple-antenna channels. The authors concentrate on key principles rather than specific practical applications, and present the material in a concise and accessible manner. Their treatment reviews the fundamental aspects of multiple-input, multiple output communication theory, and guides the reader through a number of topics at the forefront of current research and development. The book includes homework exercises and is aimed at graduate students and researchers working on wireless communications, as well as practitioners in the wireless industry.


Space-time Code Design for Wireless Communication Systems

Space-time Code Design for Wireless Communication Systems
Author: Xiaoyong Guo
Publisher:
Total Pages:
Release: 2010
Genre: Antennas (Electronics)
ISBN: 9781109671575

Download Space-time Code Design for Wireless Communication Systems Book in PDF, ePub and Kindle

It is well understood that MIMO technology could enhance the reliability of wireless communication and increase the channel capacity. The design of space-time code to explore the benefit provided by the multi-antenna systems is of key importance. This dissertation addresses several issues concerning the design of space-time code. The following is a brief description of these issues and our contributions. Cyclic division algebra (CDA) has been introduced as a means to construct full-rate nonvanishing determinant STBC (space-time block code), which achieves the diversity-multiplexing trade-off and has a very good performance. There are two steps to construct CDA-based nonvanishing determinant STBC: construction of a cyclic extension over [Special characters omitted.] (i) and finding a non-norm element. For the first step we proposed a new up-to-down construction method. With this new method we find a broad range of cyclic extensions over [Special characters omitted.] (i), which encompasses all the previous constructions. For the second step, we give new criteria for the non-norm element. Non-norm elements found by these new criteria have smaller absolute values, hence the resulted STBC has a better coding gain. The well-known design criteria for space-time code is proposed by Guey-Fitz-Bell-Kuo in 1996 and Tarokh-Seshadri-Calderbank in 1998. The derivation of the design criteria is based on the assumption that the received signals are decoded with an ML receiver. One important issue seems to be long ignored: there is no design criterion for space-time code decoded with suboptimal receivers. Only until recently that Zhang-Liu-Wong and Shang-Xia studied the full diversity codes with linear receivers. We address the issue in a much broader sense. We proposed a more general receiver structure called PIC (partial interference cancellation) group decoding. A PIC group decoding can be viewed as an intermediate decoding algorithm between linear decoding and ML decoding. It encompasses both linear decoding and ML decoding as its two extremes. We also derived a design criterion for space-time codes with PIC receivers to achieve full diversity. The full diversity criteria for codes with ML receivers and linear receivers are special cases of our new design criterion. In many applications, wireless communication devices are limited by size or hardware complexity to one antenna. Cooperative communication was introduced for communication networks with single-antenna nodes to exploit the multi-path diversity. In cooperative communications, a few nodes positioned between the source node and destination node are served as the relay nodes. One important problem for cooperative communication networks is the time-asynchronism among the relay nodes. We propose a distributed space-time coding scheme called distributed linear convolutional space-time code (DLC-STC) to address this problem. We also give systematic construction methods of DLC-STC which achieves full diversity without time synchronization among the relay nodes. Furthermore, we show that our proposed DLC-STC achieves full diversity even with suboptimal receivers such as ZF/MMSE receiver and DFE receiver.


Design and Performance Analysis of Distributed Space Time Coding Schemes for Cooperative Wireless Networks

Design and Performance Analysis of Distributed Space Time Coding Schemes for Cooperative Wireless Networks
Author: Gbenga Adetokunbo Owojaiye
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Design and Performance Analysis of Distributed Space Time Coding Schemes for Cooperative Wireless Networks Book in PDF, ePub and Kindle

In this thesis, space-time block codes originally developed for multiple antenna systems are extended to cooperative multi-hop networks. The designs are applicable to any wireless network setting especially cellular, adhoc and sensor networks where space limitations preclude the use of multiple antennas. The thesis first investigates the design of distributed orthogonal and quasi-orthogonal space time block codes in cooperative networks with single and multiple antennas at the destination. Numerical and simulation results show that by employing multiple receive antennas the diversity performance of the network is further improved at the expense of slight modification of the detection scheme. The thesis then focuses on designing distributed space time block codes for cooperative networks in which the source node participates in cooperation. Based on this, a source-assisting strategy is proposed for distributed orthogonal and quasi-orthogonal space time block codes. Numerical and simulation results show that the source-assisting strategy exhibits improved diversity performance compared to the conventional distributed orthogonal and quasi-orthogonal designs. Motivated by the problem of channel state information acquisition in practical wireless network environments, the design of differential distributed space time block codes is investigated. Specifically, a co-efficient vector-based differential encoding and decoding scheme is proposed for cooperative networks. The thesis then explores the concatenation of differential strategies with several distributed space time block coding schemes namely; the Alamouti code, square-real orthogonal codes, complex-orthogonal codes, and quasiorthogonal codes, using cooperative networks with different number of relay nodes. In order to cater for high data rate transmission in non-coherent cooperative networks, differential distributed quasi-orthogonal space-time block codes which are capable of achieving full code-rate and full diversity are proposed. Simulation results demonstrate that the differential distributed quasi-orthogonal space-time block codes outperform existing distributed space time block coding schemes in terms of code rate and bit-error-rate performance. A multidifferential distributed quasi-orthogonal space-time block coding scheme is also proposed to exploit the additional diversity path provided by the source-destination link. A major challenge is how to construct full rate codes for non-coherent cooperative broadband networks with more than two relay nodes while exploiting the achievable spatial and frequency diversity. In this thesis, full rate quasi-orthogonal codes are designed for noncoherent cooperative broadband networks where channel state information is unavailable. From this, a generalized differential distributed quasi-orthogonal space-frequency coding scheme is proposed for cooperative broadband networks. The proposed scheme is able to achieve full rate and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of the proposed scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, sufficient conditions are derived for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity. In order to exploit the additional diversity paths provided by the source-destination link, a novel multidifferential distributed quasi-orthogonal space-frequency coding scheme is proposed. The overall objective of the new scheme is to improve the quality of the detected signal at the destination with negligible increase in the computational complexity of the detector. Finally, a differential distributed quasi-orthogonal space-time-frequency coding scheme is proposed to cater for high data rate transmission and improve the performance of noncoherent cooperative broadband networks operating in highly mobile environments. The approach is to integrate the concept of distributed space-time-frequency coding with differential modulation, and employ rotated constellation quasi-orthogonal codes. From this, we design a scheme which is able to address the problem of performance degradation in highly selective fading environments while guaranteeing non-coherent signal recovery and full code rate in cooperative broadband networks. The coding scheme employed in this thesis relaxes the assumption of constant channel variation in the temporal and frequency dimensions over long symbol periods, thus performance degradation is reduced in frequencyselective and time-selective fading environments. Simulation results illustrate the performance of the proposed differential distributed quasi-orthogonal space-time-frequency coding scheme under different channel conditions.


Cooperative Communications and Networking

Cooperative Communications and Networking
Author: K. J. Ray Liu
Publisher: Cambridge University Press
Total Pages: 643
Release: 2009
Genre: Computers
ISBN: 0521895138

Download Cooperative Communications and Networking Book in PDF, ePub and Kindle

Presents the fundamentals of cooperative communications and networking with a holistic approach to principal topics where improvements can be obtained.