Distributed Graph Analytics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Distributed Graph Analytics PDF full book. Access full book title Distributed Graph Analytics.

Distributed Graph Analytics

Distributed Graph Analytics
Author: Unnikrishnan Cheramangalath
Publisher: Springer Nature
Total Pages: 207
Release: 2020-04-17
Genre: Computers
ISBN: 3030418863

Download Distributed Graph Analytics Book in PDF, ePub and Kindle

This book brings together two important trends: graph algorithms and high-performance computing. Efficient and scalable execution of graph processing applications in data or network analysis requires innovations at multiple levels: algorithms, associated data structures, their implementation and tuning to a particular hardware. Further, programming languages and the associated compilers play a crucial role when it comes to automating efficient code generation for various architectures. This book discusses the essentials of all these aspects. The book is divided into three parts: programming, languages, and their compilation. The first part examines the manual parallelization of graph algorithms, revealing various parallelization patterns encountered, especially when dealing with graphs. The second part uses these patterns to provide language constructs that allow a graph algorithm to be specified. Programmers can work with these language constructs without worrying about their implementation, which is the focus of the third part. Implementation is handled by a compiler, which can specialize code generation for a backend device. The book also includes suggestive results on different platforms, which illustrate and justify the theory and practice covered. Together, the three parts provide the essential ingredients for creating a high-performance graph application. The book ends with a section on future directions, which offers several pointers to promising topics for future research. This book is intended for new researchers as well as graduate and advanced undergraduate students. Most of the chapters can be read independently by those familiar with the basics of parallel programming and graph algorithms. However, to make the material more accessible, the book includes a brief background on elementary graph algorithms, parallel computing and GPUs. Moreover it presents a case study using Falcon, a domain-specific language for graph algorithms, to illustrate the concepts.


Distributed Graph Analytics

Distributed Graph Analytics
Author: Unnikrishnan Cheramangalath
Publisher:
Total Pages: 207
Release: 2020
Genre: Electronic books
ISBN: 9783030418878

Download Distributed Graph Analytics Book in PDF, ePub and Kindle

This book brings together two important trends: graph algorithms and high-performance computing. Efficient and scalable execution of graph processing applications in data or network analysis requires innovations at multiple levels: algorithms, associated data structures, their implementation and tuning to a particular hardware. Further, programming languages and the associated compilers play a crucial role when it comes to automating efficient code generation for various architectures. This book discusses the essentials of all these aspects. The book is divided into three parts: programming, languages, and their compilation. The first part examines the manual parallelization of graph algorithms, revealing various parallelization patterns encountered, especially when dealing with graphs. The second part uses these patterns to provide language constructs that allow a graph algorithm to be specified. Programmers can work with these language constructs without worrying about their implementation, which is the focus of the third part. Implementation is handled by a compiler, which can specialize code generation for a backend device. The book also includes suggestive results on different platforms, which illustrate and justify the theory and practice covered. Together, the three parts provide the essential ingredients for creating a high-performance graph application. The book ends with a section on future directions, which offers several pointers to promising topics for future research. This book is intended for new researchers as well as graduate and advanced undergraduate students. Most of the chapters can be read independently by those familiar with the basics of parallel programming and graph algorithms. However, to make the material more accessible, the book includes a brief background on elementary graph algorithms, parallel computing and GPUs. Moreover it presents a case study using Falcon, a domain-specific language for graph algorithms, to illustrate the concept s.


Large-scale Graph Analysis: System, Algorithm and Optimization

Large-scale Graph Analysis: System, Algorithm and Optimization
Author: Yingxia Shao
Publisher: Springer Nature
Total Pages: 154
Release: 2020-07-01
Genre: Computers
ISBN: 9811539286

Download Large-scale Graph Analysis: System, Algorithm and Optimization Book in PDF, ePub and Kindle

This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms – the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms. This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology for designing efficient large-scale graph algorithms.


Systems for Big Graph Analytics

Systems for Big Graph Analytics
Author: Da Yan
Publisher: Springer
Total Pages: 93
Release: 2017-05-31
Genre: Computers
ISBN: 3319582178

Download Systems for Big Graph Analytics Book in PDF, ePub and Kindle

There has been a surging interest in developing systems for analyzing big graphs generated by real applications, such as online social networks and knowledge graphs. This book aims to help readers get familiar with the computation models of various graph processing systems with minimal time investment. This book is organized into three parts, addressing three popular computation models for big graph analytics: think-like-a-vertex, think-likea- graph, and think-like-a-matrix. While vertex-centric systems have gained great popularity, the latter two models are currently being actively studied to solve graph problems that cannot be efficiently solved in vertex-centric model, and are the promising next-generation models for big graph analytics. For each part, the authors introduce the state-of-the-art systems, emphasizing on both their technical novelties and hands-on experiences of using them. The systems introduced include Giraph, Pregel+, Blogel, GraphLab, CraphChi, X-Stream, Quegel, SystemML, etc. Readers will learn how to design graph algorithms in various graph analytics systems, and how to choose the most appropriate system for a particular application at hand. The target audience for this book include beginners who are interested in using a big graph analytics system, and students, researchers and practitioners who would like to build their own graph analytics systems with new features.


Practical Graph Analytics with Apache Giraph

Practical Graph Analytics with Apache Giraph
Author: Roman Shaposhnik
Publisher: Apress
Total Pages: 320
Release: 2015-11-19
Genre: Computers
ISBN: 1484212517

Download Practical Graph Analytics with Apache Giraph Book in PDF, ePub and Kindle

Practical Graph Analytics with Apache Giraph helps you build data mining and machine learning applications using the Apache Foundation’s Giraph framework for graph processing. This is the same framework as used by Facebook, Google, and other social media analytics operations to derive business value from vast amounts of interconnected data points. Graphs arise in a wealth of data scenarios and describe the connections that are naturally formed in both digital and real worlds. Examples of such connections abound in online social networks such as Facebook and Twitter, among users who rate movies from services like Netflix and Amazon Prime, and are useful even in the context of biological networks for scientific research. Whether in the context of business or science, viewing data as connected adds value by increasing the amount of information available to be drawn from that data and put to use in generating new revenue or scientific opportunities. Apache Giraph offers a simple yet flexible programming model targeted to graph algorithms and designed to scale easily to accommodate massive amounts of data. Originally developed at Yahoo!, Giraph is now a top top-level project at the Apache Foundation, and it enlists contributors from companies such as Facebook, LinkedIn, and Twitter. Practical Graph Analytics with Apache Giraph brings the power of Apache Giraph to you, showing how to harness the power of graph processing for your own data by building sophisticated graph analytics applications using the very same framework that is relied upon by some of the largest players in the industry today.


Compiler and System for Resilient Distributed Heterogeneous Graph Analytics

Compiler and System for Resilient Distributed Heterogeneous Graph Analytics
Author: Gurbinder Singh Gill
Publisher:
Total Pages: 498
Release: 2020
Genre:
ISBN:

Download Compiler and System for Resilient Distributed Heterogeneous Graph Analytics Book in PDF, ePub and Kindle

Graph analytics systems are used in a wide variety of applications including health care, electronic circuit design, machine learning, and cybersecurity. Graph analytics systems must handle very large graphs such as the Facebook friends graph, which has more than a billion nodes and 200 billion edges. Since machines have limited main memory, distributed-memory clusters with sufficient memory and computation power are required for processing of these graphs. In distributed graph analytics, the graph is partitioned among the machines in a cluster, and communication between partitions is implemented using a substrate like MPI. However, programming distributed-memory systems are not easy and the recent trend towards the processor heterogeneity has added to this complexity. To simplify the programming of graph applications on such platforms, this dissertation first presents a compiler called Abelian that translates shared-memory descriptions of graph algorithms written in the Galois programming model into efficient code for distributed-memory platforms with heterogeneous processors. An important runtime parameter to the compiler-generated distributed code is the partitioning policy. We present an experimental study of partitioning strategies for distributed work-efficient graph analytics applications on different CPU architecture clusters at large scale (up to 256 machines). Based on the study we present a simple rule of thumb to select among myriad policies. Another challenge of distributed graph analytics that we address in this dissertation is to deal with machine fail-stop failures, which is an important concern especially for long-running graph analytics applications on large clusters. We present a novel communication and synchronization substrate called Phoenix that leverages the algorithmic properties of graph analytics applications to recover from faults with zero overheads during fault-free execution and show that Phoenix is 24x faster than previous state-of-the-art systems. In this dissertation, we also look at the new opportunities for graph analytics on massive datasets brought by a new kind of byte-addressable memory technology with higher density and lower cost than DRAM such as intel Optane DC Persistent Memory. This enables the design of affordable systems that support up to 6TB of randomly accessible memory. In this dissertation, we present key runtime and algorithmic principles to consider when performing graph analytics on massive datasets on Optane DC Persistent Memory as well as highlight ideas that apply to graph analytics on all large-memory platforms. Finally, we show that our distributed graph analytics infrastructure can be used for a new domain of applications, in particular, embedding algorithms such as Word2Vec. Word2Vec trains the vector representations of words (also known as word embeddings) on large text corpus and resulting vector embeddings have been shown to capture semantic and syntactic relationships among words. Other examples include Node2Vec, Code2Vec, Sequence2Vec, etc (collectively known as Any2Vec) with a wide variety of uses. We formulate the training of such applications as a graph problem and present GraphAny2Vec, a distributed Any2Vec training framework that leverages the state-of-the-art distributed heterogeneous graph analytics infrastructure developed in this dissertation to scale Any2Vec training to large distributed clusters. GraphAny2Vec also demonstrates a novel way of combining model gradients during training, which allows it to scale without losing accuracy


Graph Analysis and Visualization

Graph Analysis and Visualization
Author: Richard Brath
Publisher: John Wiley & Sons
Total Pages: 544
Release: 2015-01-30
Genre: Computers
ISBN: 1118845870

Download Graph Analysis and Visualization Book in PDF, ePub and Kindle

Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.


Software Foundations for Data Interoperability and Large Scale Graph Data Analytics

Software Foundations for Data Interoperability and Large Scale Graph Data Analytics
Author: Lu Qin
Publisher: Springer Nature
Total Pages: 203
Release: 2020-11-05
Genre: Computers
ISBN: 3030611337

Download Software Foundations for Data Interoperability and Large Scale Graph Data Analytics Book in PDF, ePub and Kindle

This book constitutes refereed proceedings of the 4th International Workshop on Software Foundations for Data Interoperability, SFDI 2020, and 2nd International Workshop on Large Scale Graph Data Analytics, LSGDA 2020, held in Conjunction with VLDB 2020, in September 2020. Due to the COVID-19 pandemic the conference was held online. The 11 full papers and 4 short papers were thoroughly reviewed and selected from 38 submissions. The volme presents original research and application papers on the development of novel graph analytics models, scalable graph analytics techniques and systems, data integration, and data exchange.


The Practitioner's Guide to Graph Data

The Practitioner's Guide to Graph Data
Author: Denise Gosnell
Publisher: "O'Reilly Media, Inc."
Total Pages: 471
Release: 2020-03-20
Genre: Computers
ISBN: 1492044024

Download The Practitioner's Guide to Graph Data Book in PDF, ePub and Kindle

Graph data closes the gap between the way humans and computers view the world. While computers rely on static rows and columns of data, people navigate and reason about life through relationships. This practical guide demonstrates how graph data brings these two approaches together. By working with concepts from graph theory, database schema, distributed systems, and data analysis, you’ll arrive at a unique intersection known as graph thinking. Authors Denise Koessler Gosnell and Matthias Broecheler show data engineers, data scientists, and data analysts how to solve complex problems with graph databases. You’ll explore templates for building with graph technology, along with examples that demonstrate how teams think about graph data within an application. Build an example application architecture with relational and graph technologies Use graph technology to build a Customer 360 application, the most popular graph data pattern today Dive into hierarchical data and troubleshoot a new paradigm that comes from working with graph data Find paths in graph data and learn why your trust in different paths motivates and informs your preferences Use collaborative filtering to design a Netflix-inspired recommendation system