Discrete Element Modelling Of Idealised Asphalt Mixture PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Discrete Element Modelling Of Idealised Asphalt Mixture PDF full book. Access full book title Discrete Element Modelling Of Idealised Asphalt Mixture.

DISCRETE ELEMENT SIMULATION OF ASPHALT MIXTURE FROM MODELING TO APPLICATION

DISCRETE ELEMENT SIMULATION OF ASPHALT MIXTURE FROM MODELING TO APPLICATION
Author:
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download DISCRETE ELEMENT SIMULATION OF ASPHALT MIXTURE FROM MODELING TO APPLICATION Book in PDF, ePub and Kindle

Abstract : Asphalt mixture is the most widely used pavement engineering material. Because the laboratory tests of asphalt mixture are costly, researchers keep searching for a practical numerical simulation approach to facilitate their study on mixture design, compaction process, and service performance. Although the discrete element method (DEM) had been introduced into those research areas for more than three decades and has been proved to be an effective tool, its utilizing is still limited by lacking coarse aggregate morphologies, efficient modeling approaches, and complete mechanical theories. This study aims to extend the application of DEM in asphalt mixture research by 1) establishing a coarse aggregate morphology database. Coarse aggregates were categorized according to shape information and then scanned through a three-dimensional scanner. The essential morphology factors, including grain size, dimensions, surface area, volume, and specific surface area, were collected and analyzed; 2) building the gyratory compaction process. Loose material assembly was precisely generated through the developed algorithm according to the mixture design. The loose material was then compacted through the programed gyration moment. The impacts of contact parameters on compaction were investigated. Speed-up techniques were proposed and verified by analyzing the internal structure of the compacted mixtures; 3) developing a set of modeling procedures with high efficiency, low cost, reliable accuracy, and wide application. The new modeling procedures use coarse aggregate temples from the database to improve simulation accuracy and use geometry information from the gyratory compacted mixtures or random generation method to save laboratory specimens. Hexagonal close-packed (HCP) structure, which has advantages in simulating shear failure and Poisson's ratio, was employed instead of the simple cubic-centered (SCC) structure. The corresponding mechanical calculation for contact micro-parameters was then derived and verify through simple stiffness/bond tests and complete indirect tensile (IDT) tests; 4) applying DEM models to research practice. Based on those improvements, this study involved DEM in the research of the mechanical performance of asphalt mixtures with high contents of ground tire rubber (GTR). Incorporate with laboratory tests, although asphalt mixtures with high contents of GTR have lower IDT strength of was than a conventional mixture, its cracking resistance and fatigue resistance were proved to be higher. By analyzing the contact force distribution in the DEM models, rubber particles with low moduli were found to be the endogenous reason for better performance. By further investigation, the rubber particles functioned as buffers that disperse the loadings. With the above four parts of research, the application of the DEM in asphalt mixture has significant improvement in modeling techniques, mechanical theories, simulation efficiency, and scope of application.


Establishment of Microstructure of Asphalt Mixtures Based on Discrete Element Method

Establishment of Microstructure of Asphalt Mixtures Based on Discrete Element Method
Author: Keli Wang
Publisher:
Total Pages: 13
Release: 2014
Genre: Air voids
ISBN:

Download Establishment of Microstructure of Asphalt Mixtures Based on Discrete Element Method Book in PDF, ePub and Kindle

For several decades, rutting in asphalt pavements has not been fully addressed or prevented. Study on the microstructure of asphalt concrete may provide a good alternative way to approach a solution. Conventional microstructure modeling based on computed tomography (CT), however, is expensive, time consuming, and specimen destructive. In this paper we present a study on discrete element modeling of asphalt concrete in which the microstructure is described based on the compositional phases. This approach is less expensive, more rapid, nondestructive, and easier to use relative to the CT approach. First, a new algorithm for generating coarse aggregate elements with irregular shapes is developed. It considers the shape and orientation distribution of particles in the microstructure of asphalt concrete. The irregular shapes are created based on the mechanism of sieving analysis. The random distribution of orientations is modeled with a rotation algorithm. Some particular problems such as the issue of "floaters" are solved with an iteration method in the proposed algorithm. Second, the air void phase, which is treated as the second microstructure component of asphalt concrete, is established with a regression model based on data measured from specimens fabricated with a Superpave gyratory compactor. Finally, the developed microstructural model of asphalt concrete is validated with volume fractions of phases in actual asphalt mixture specimens. The results are quite satisfactory.


Particulate Discrete Element Modelling

Particulate Discrete Element Modelling
Author: Catherine O'Sullivan
Publisher: CRC Press
Total Pages: 574
Release: 2011-04-06
Genre: Technology & Engineering
ISBN: 1482266490

Download Particulate Discrete Element Modelling Book in PDF, ePub and Kindle

The first single work on DEM providing the information to get started with this powerful numerical modelling approach. Provides the basic details of the numerical method and the approaches used to interpret the results of DEM simulations. It will be of use to professionals, researchers and higher level students, with a theoretical overview of DEM as well as practical guidance.Selected Contents: 1.Introduction 2.Use of DEM in Geomechanics 3.Calculation of Contact Forces 4.Particle Motion 5.Particle Types 6.Boundary Conditions 7.Initial Geometry and Specimen Generation 8.Time Integration and Discrete Element Modelling 9.DEM Interpretation: A Continuum Perspective 10.Postprocessing: Graphical Interpretation of DEM Simulations 11.Basic Statisti


Discrete Element Method (DEM) Analyses for Hot-mix Asphalt (HMA) Mixture Compaction

Discrete Element Method (DEM) Analyses for Hot-mix Asphalt (HMA) Mixture Compaction
Author: Jingsong Chen
Publisher:
Total Pages: 178
Release: 2011
Genre:
ISBN:

Download Discrete Element Method (DEM) Analyses for Hot-mix Asphalt (HMA) Mixture Compaction Book in PDF, ePub and Kindle

Asphalt mixture compaction is an important procedure of asphalt mixture construction and can significantly affect the performance of asphalt pavement. Many laboratory compaction methods (or devices), have been developed to study the asphalt mixture compaction. Nevertheless, the whole process from the selection of aggregate to laboratory compaction is still time-consuming and requires significant human and material resources. In order to better understand asphalt mixture compaction, some researchers began to use finite element method (FEM) to study and analyze mixture compaction. However, FEM is a continuum approach and lacks the ability to take into account the slippage and interlocking of aggregates during compaction. Discrete Element Method (DEM) is a discontinuum analysis method, which can simulate the deformation process of joint systems or discrete particle assembly under quasi-static and dynamic condition. Therefore, it can overcome the shortcomings of FEM and is a more effective tool than FEM to simulate asphalt mixture compaction. In this study, an open source 3D DEM code implemented with the C++ programming language was modified and applied to simulate the compaction of hot-mix asphalt (HMA). A viscoelastic contact model was developed in the DEM code and was verified through comparison with well established analytical solutions. The input parameters of the newly developed contact model were obtained through nonlinear regression analysis of dynamic modulus test results. Two commonly used compaction methods (Superpave gyratory compaction and asphalt vibratory compaction) and one linear kneading compaction based on APA machine were simulated using the DEM code, and the DEM compaction models were verified through the comparison between the DEM predicted results and the laboratory measured test results. The air voids distribution within the asphalt specimens was also analyzed by post processing virtual DEM compaction digital specimens and the level of heterogeneity of the air void distribution within the specimens in the vertical and lateral directions was studied. The DEM simulation results in this study were in a relatively good agreement with the experimental data and previous research results, which demonstrates that the DEM is a feasible method to simulate asphalt mixture compaction under different loading conditions and, with further research, it could be a potentially helpful tool for asphalt mix design by reducing the number of physical compactions in the laboratory.


Pavement Cracking

Pavement Cracking
Author: Imad L. Al-Qadi
Publisher: CRC Press
Total Pages: 932
Release: 2008-07-30
Genre: Technology & Engineering
ISBN: 0203882199

Download Pavement Cracking Book in PDF, ePub and Kindle

Internationally, much attention is given to causes, prevention, and rehabilitation of cracking in concrete, flexible, and composite pavements. The Sixth RILEMInternational Conference on Cracking in Pavements (Chicago, June 16-18, 2008) provided a forum for discussion of recent developments and research results.This book is a collection of papers fr


Modeling and Simulation in Engineering Sciences

Modeling and Simulation in Engineering Sciences
Author: Noreen Sher Akbar
Publisher: BoD – Books on Demand
Total Pages: 304
Release: 2016-08-31
Genre: Computers
ISBN: 9535126083

Download Modeling and Simulation in Engineering Sciences Book in PDF, ePub and Kindle

This book features state-of-the-art contributions in mathematical, experimental and numerical simulations in engineering sciences. The contributions in this book, which comprise twelve chapters, are organized in six sections spanning mechanical, aerospace, electrical, electronic, computer, materials, geotechnical and chemical engineering. Topics include metal micro-forming, compressible reactive flows, radio frequency circuits, barrier infrared detectors, fiber Bragg and long-period fiber gratings, semiconductor modelling, many-core architecture computers, laser processing of materials, alloy phase decomposition, nanofluids, geo-materials and rheo-kinetics. Contributors are from Europe, China, Mexico, Malaysia and Iran. The chapters feature many sophisticated approaches including Monte Carlo simulation, FLUENT and ABAQUS computational modelling, discrete element modelling and partitioned frequency-time methods. The book will be of interest to researchers and also consultants engaged in many areas of engineering simulation.