Discrete Element Modeling Of Rock Deformation Fracture Network Development And Permeability Evolution Under Hydraulic Stimulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Discrete Element Modeling Of Rock Deformation Fracture Network Development And Permeability Evolution Under Hydraulic Stimulation PDF full book. Access full book title Discrete Element Modeling Of Rock Deformation Fracture Network Development And Permeability Evolution Under Hydraulic Stimulation.

Discrete Element Modeling of Rock Deformation, Fracture Network Development and Permeability Evolution Under Hydraulic Stimulation

Discrete Element Modeling of Rock Deformation, Fracture Network Development and Permeability Evolution Under Hydraulic Stimulation
Author:
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Discrete Element Modeling of Rock Deformation, Fracture Network Development and Permeability Evolution Under Hydraulic Stimulation Book in PDF, ePub and Kindle

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.


Discrete Fracture Network Modeling of Hydraulic Stimulation

Discrete Fracture Network Modeling of Hydraulic Stimulation
Author: Mark W. McClure
Publisher: Springer Science & Business Media
Total Pages: 96
Release: 2013-06-15
Genre: Technology & Engineering
ISBN: 3319003836

Download Discrete Fracture Network Modeling of Hydraulic Stimulation Book in PDF, ePub and Kindle

Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks. The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale. Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of novel techniques to ensure efficiency and realistic model behavior are implemented, and tested. The simulation methodology can also be used as an efficient method for directly solving quasistatic fracture contact problems. Results show how stresses induced by fracture deformation during stimulation directly impact the mechanism of propagation and the resulting fracture network.


Discrete Fracture Network Modeling of Hydraulic Stimulation

Discrete Fracture Network Modeling of Hydraulic Stimulation
Author: Mark McClure
Publisher: Springer
Total Pages: 90
Release: 2013-06-19
Genre: Science
ISBN: 9783319003849

Download Discrete Fracture Network Modeling of Hydraulic Stimulation Book in PDF, ePub and Kindle

Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks. The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale. Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of novel techniques to ensure efficiency and realistic model behavior are implemented, and tested. The simulation methodology can also be used as an efficient method for directly solving quasistatic fracture contact problems. Results show how stresses induced by fracture deformation during stimulation directly impact the mechanism of propagation and the resulting fracture network.


The Combined Finite-Discrete Element Method

The Combined Finite-Discrete Element Method
Author: Antonio A. Munjiza
Publisher: John Wiley & Sons
Total Pages: 348
Release: 2004-04-21
Genre: Technology & Engineering
ISBN: 0470020172

Download The Combined Finite-Discrete Element Method Book in PDF, ePub and Kindle

The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.


Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications

Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications
Author: Lanru Jing
Publisher: Elsevier
Total Pages: 563
Release: 2007-07-18
Genre: Science
ISBN: 0080551858

Download Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications Book in PDF, ePub and Kindle

This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented. · Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow · Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media · Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models


Simulated Evolution of Fractures and Fracture Networks Subject to Thermal Cooling

Simulated Evolution of Fractures and Fracture Networks Subject to Thermal Cooling
Author:
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download Simulated Evolution of Fractures and Fracture Networks Subject to Thermal Cooling Book in PDF, ePub and Kindle

Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.


Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses

Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses
Author: Fengshou Zhang
Publisher: Springer Nature
Total Pages: 316
Release: 2023-09-11
Genre: Science
ISBN: 3031257871

Download Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses Book in PDF, ePub and Kindle

The subject of thermo-hydro-mechanical coupled processes in fractured rock masses has close relevance to energy-related deep earth engineering activities, such as enhanced geothermal systems, geological disposal of radioactive waste, sequestration of CO2, long-term disposal of waste water and recovery of hydrocarbons from unconventional reservoirs. Despite great efforts by engineers and researchers, comprehensive understanding of the thermo-hydro-mechanical coupled processes in fractured rock mass remains a great challenge. The discrete element method (DEM), originally developed by Dr. Peter Cundall, has become widely used for the modeling of a rock mass, including its deformation, damage, fracturing and stability. DEM modeling of the coupled thermo-hydro-mechanical processes in fractured rock masses can provide some unique insights, to say the least, for better understanding of those complex issues. The authors of this book have participated in various projects involving DEM modeling of coupled thermo-hydro-mechanical processes during treatment of a rock mass by fluid injection and/or extraction and have provided consulting services to some of the largest oil-and-gas companies in the world. The breadth and depth of our engineering expertise are reflected by its successful applications in the major unconventional plays in the world, including Permian, Marcellus, Bakken, Eagle Ford, Horn River, Chicontepec, Sichuan, Ordos and many more. The unique combination of the state-of-the-art numerical modeling techniques with state-of-the-practice engineering applications makes the presented material relevant and valuable for engineering practice. We believe that it is beneficial to share the advances on this subject and promote some further development.


Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling

Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling
Author: Yongliang Wang
Publisher: Springer Nature
Total Pages: 204
Release: 2020-08-31
Genre: Science
ISBN: 981157197X

Download Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling Book in PDF, ePub and Kindle

This book mainly focuses on the adaptive analysis of damage and fracture in rock, taking into account multiphysical fields coupling (thermal, hydro, mechanical, and chemical fields). This type of coupling is a crucial aspect in practical engineering for e.g. coal mining, oil and gas exploration, and civil engineering. However, understanding the influencing mechanisms and preventing the disasters resulting from damage and fracture evolution in rocks require high-precision and reliable solutions. This book proposes adaptive numerical algorithms and simulation analysis methods that offer significant advantages in terms of accuracy and reliability. It helps readers understand these innovative methods quickly and easily. The content consists of: (1) a finite element algorithm for modeling the continuum damage evolution in rocks, (2) adaptive finite element analysis for continuum damage evolution and determining the wellbore stability of transversely isotropic rock, (3) an adaptive finite element algorithm for damage detection in non-uniform Euler–Bernoulli beams with multiple cracks, using natural frequencies, (4) adaptive finite element–discrete element analysis for determining multistage hydrofracturing in naturally fractured reservoirs, (5) adaptive finite element–discrete element analysis for multistage supercritical CO2 fracturing and microseismic modeling, and (6) an adaptive finite element–discrete element–finite volume algorithm for 3D multiscale propagation of hydraulic fracture networks, taking into account hydro-mechanical coupling. Given its scope, the book offers a valuable reference guide for researchers, postgraduates and undergraduates majoring in engineering mechanics, mining engineering, geotechnical engineering, and geological engineering.


A 3D Hydro-mechanical Discrete Element Model for Hydraulic Fracturing in Naturally Fractured Rock

A 3D Hydro-mechanical Discrete Element Model for Hydraulic Fracturing in Naturally Fractured Rock
Author: Efthymios Papachristos
Publisher:
Total Pages: 0
Release: 2017
Genre:
ISBN:

Download A 3D Hydro-mechanical Discrete Element Model for Hydraulic Fracturing in Naturally Fractured Rock Book in PDF, ePub and Kindle

Hydraulic fracturing is at the core of a number of naturally occurring and induced phenomena and crucial for a sustainable development of energy resource production. Given its crucial role this process has been given increasing attention in the last three decades from the academic world. Nonetheless a number of very significant aspects of this process have been systematically overlooked by the community. Two of the most notable ones are the inability of the vast majority of existing models to tackle at once the propagation of hydraulic fractures in realistic, fractured rocks-masses where hydraulic fracturing is a competing dipole mechanism between fracturing of the intact rock and re-activation of exiting fracture networks. Another essential aspect of this process is that it is intrinsically three-dimensional which is neglected by most models. To tackle this vital problem taking into account these pivotal aspects, a fully coupled hydro-mechanical model based on the discrete element method has been developed. The rock mass is here represented by a set of discrete elements interacting through elastic-brittle bonds that can break to form cracks inside the simulated medium. Theses cracks can coalesce to form fractures. A finite volume scheme is used to simulate the fluid flow in between these discrete elements. The flow is computed as a function of the pore space deformation in the intact medium and of the cracks' aperture in the fractures. Furthermore, the natural fractures are modelled explicitly and present mechanical and hydraulic properties different from the rock matrix. Employing this model in an intact numerical specimen, single fluid injection and multiple closely spaced sequential injections, enabled the description the full spatio-temporal evolution of HF propagation and its impact on quantitative indexes used in description of hydraulic fracturing treatments, such as fractured volume, fracture intensity and down-the-hole pressure for different control parameters and in-situ stress-fields. Moreover, injections from perforation slots which are not well aligned to the minimum stress plane showed possible creation of percolating non-planar hydraulic fractures of low connectivity, which can be troublesome for proppant placement. Also, strong interactions between closely spaced HF were highlighted by tracking the local principal stress rotation around the injection zones, emphasizing the importance of stress shadow effects. Optimization solutions are proposed for multiple treatments from a non-perfectly aligned wellbore. Finally, interaction between a single hydraulic fracture and a single natural fracture of varying properties and orientations was studied using the proposed model. The evolution of the hydraulic fracture and the global response of the specimen were recorded in a way comparable to existing experimental data to bridge the experimental and numerical findings. Persistent natural fractures appeared to be barriers for the hydraulic fracture if their conductance is high compared to the matrix conductivity or if their stiffness is significantly low compared to the rock matrix rigidity. Low stiffness in non-persistent defects might also cause a bifurcation of the main hydraulic fracture due to the local stress field perturbation around the defect and ahead of the hydraulic fracture tip. Furthermore, high approach angles and differential stresses seemed to favour crossing of the natural fracture while low angles enable shear slippage or dilation on the part of the plane which is not affected by the local stress perturbation.


Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses

Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses
Author: Xing Zhang
Publisher: Elsevier
Total Pages: 301
Release: 2002-05-14
Genre: Science
ISBN: 0080537863

Download Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses Book in PDF, ePub and Kindle

Our understanding of the subsurface system of the earth is becoming increasingly more sophisticated both at the level of the behaviour of its components (solid, liquid and gas) as well as their variations in space and time. The implementation of coupled models is essential for the understanding of an increasing number of natural phenomena and in predicting human impact on these. The growing interest in the relation between fluid flow and deformation in subsurface rock systems that characterise the upper crust has led to increasingly specialized knowledge in many branches of earth sciences and engineering. A multidisciplinary subject dealing with deformation and fluid flow in the subsurface system is emerging. While research in the subject area of faulting, fracturing and fluid flow has led to significant progress in many different areas, the approach has tended to be "reductionist", i.e. involving the isolation and simplification of phenomena so that they may be treated as single physical processes. The reality is that many processes operate together within subsurface systems, and this is particularly true for fluid flow and deformation of fractured rock masses. The aim of this book is to begin to explore how advances in numerical modelling can be applied to understanding the complex phenomena observed in such systems. Although mainly based on original research, the book also includes the fundamental principles and practical methods of numerical modelling, in particular distinct element methods. This volume explores the principles of numerical modelling and the methodologies for some of the most important problems, in addition to providing practical models with detailed discussions on various topics.