Developments And Applications Of Methods For Palladium And Copper Catalyzed Carbon Nitrogen Bond Formation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Developments And Applications Of Methods For Palladium And Copper Catalyzed Carbon Nitrogen Bond Formation PDF full book. Access full book title Developments And Applications Of Methods For Palladium And Copper Catalyzed Carbon Nitrogen Bond Formation.

Developments and Applications of Methods for Palladium- and Copper-catalyzed Carbon-nitrogen Bond Formation

Developments and Applications of Methods for Palladium- and Copper-catalyzed Carbon-nitrogen Bond Formation
Author: Jeffrey Chih-Yeh Yang
Publisher:
Total Pages: 467
Release: 2018
Genre:
ISBN:

Download Developments and Applications of Methods for Palladium- and Copper-catalyzed Carbon-nitrogen Bond Formation Book in PDF, ePub and Kindle

The studies presented in this dissertation are aimed at the development and application of methodologies that enable carbon-nitrogen (C-N) bond formation catalyzed by late transition metals such as palladium and copper. The first part of this thesis focuses on the use of palladium catalysis for the construction of a carbon(sp2)-nitrogen bond in the context of a biphasic continuous-flow system (Chapter 1). The second part of this thesis describes the recent developments of copper-hydride (CuH) catalyzed asymmetric hydroamination for the formation of a-chiral carbon(sp3)-nitrogen bonds from olefins. This work includes the application of CuH catalysis to the synthesis of chiral N-alkyl aziridines (Chapter 2), and the discovery and development of novel electrophilic amines to enable CuH-catalyzed asymmetric hydroamination to directly access primary amines (Chapter 3). Part I. Chapter 1. Use of a "Catalytic" Cosolvent, N,N-Dimethyl Octanamide, Allows the Flow Synthesis of Imatinib with no Solvent Switch A general, efficient method for C-N cross-coupling has been developed using N,N-dimethyloctanamide as a cosolvent for biphasic continuous-flow applications. In addition to utilizing a proper co-solvent, the described method harnesses the superior mixing abilities of a stainless-steel powder packed tube reactor to efficiently couple a wide range of aryl/heteroaryl halides and aryl/heteroaryl/alkyl amines in a short period of time (


Amination and Formation of sp2 C-N Bonds

Amination and Formation of sp2 C-N Bonds
Author: Marc Taillefer
Publisher: Springer
Total Pages: 233
Release: 2013-12-12
Genre: Science
ISBN: 3642405460

Download Amination and Formation of sp2 C-N Bonds Book in PDF, ePub and Kindle

Palladium-Catalyzed sp2C–N Bond Forming Reactions: Recent Developments and Applications. Metal-catalyzed C(sp2)-N bond formation.- Recent Developments in Recyclable Copper Catalyst Systems for C−N Bond Forming Cross-Coupling Reactions Using Aryl Halides and Arylboronic Acids. Assembly of N-containing heterocycles via Pd and Cu-catalyzed C-N bond formation reactions. Copper-Catalyzed C(aryl)-N Bond Formation.


New Pd and Cu-based Catalysts for Carbon-heteroatom Bond Formation

New Pd and Cu-based Catalysts for Carbon-heteroatom Bond Formation
Author: Nootaree Niljianskul
Publisher:
Total Pages: 635
Release: 2015
Genre:
ISBN:

Download New Pd and Cu-based Catalysts for Carbon-heteroatom Bond Formation Book in PDF, ePub and Kindle

The research presented in this dissertation is aimed at the development of novel methodologies for carbon-heteroatom cross-coupling reactions catalyzed by late-transition metals. Both palladium and copper are central to the field of transition metal-catalysis and are integral to the catalyst systems developed as part of our continual advancement in cross-coupling reactions. The first part of this thesis focuses on the use of palladium catalysts to form carbon-sulfur bonds directed towards aryl sulfonamide synthesis. The second part of the thesis describes the recent development in the copper(!) hydride mediated formation of carbon-nitrogen bonds via hydroamination of olefins. Part I. Chapter 1. Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids Using a biaryl phosphine ligand platform, the first palladium-catalyzed cross-coupling reaction of phenyl chlorosulfate with arylboronic acids was achieved. In this context, the arylsulfonyl chloride products serve as useful precursors to a variety of sulfonyl functional groups, such as aryl sulfonamides, aryl sulfones, and arenesulfonate esters. In particular, this method allows for the preparation of a number of arylsulfonyl chlorides that are not accessible via electrophilic aromatic substitution pathways and under mild reaction conditions. Additionally, this methodology points to an unprecedented selectivity for the phenylchlorosulfate electrophiles used in the cross-coupling reactions. Part II. Chapter 2. Enantio- and Regioselective Copper-Catalyzed Hydroamination of Styrenes and the Extension of the Methodology towards Anti-Markovnikov Hydroamination of Terminal Aliphatic Alkenes The development of a copper-mediated strategy towards the hydroamination of styrene derivatives is reported. In this system, the reaction proceeds regioselectively and enantioselectively to generate [alpha]-branched amines. The system can transform a wide variety of substituted styrenes, including trans-, cis-, and [beta]-disubstituted styrenes. In addition, our extension to copper-catalyzed hydroamination reactions of unactivated aliphatic olefins is reported. Using terminal aliphatic alkenes, the copper-catalyzed hydroamination reactions proceed with anti-Markovnikov regioselectivity. Preliminary results point to the application of this methodology towards [beta]-chiral amine synthesis via the hydroamination of I, 1-disubstituted alkenes. Chapter 3. [alpha]-Aminosilane Synthesis via Copper-Catalyzed Hydroamination of Vinylsilanes The copper-catalyzed hydroamination of vinylsilanes is described. This regioselective reaction generates a-chiral aminosilanes in high yields and enantioselectivities. The method is compatible with differentially substituted vinylsilanes and allows access to many valuable chiral organosilicon compounds. Chapter 4. Synthesis of [gamma]-Chiral Amines via Copper-Catalyzed Hydroamination of 3,3- Disubstituted Allylic Alcohols and 3,3-Disubstituted Allylic Benzoates An investigation into the copper-catalyzed hydroamination of allylic alcohols and allylic benzoates is reported. The reaction proceeds via a [beta]-alkoxy elimination, setting a stereogenic center at the 3-postion to generate [gamma]-chiral amine products. The reaction is more efficient using allylic benzoates. This method is completely regioselective and is applicable to aliphatic allylic benzoates as well as aromatic allylic benzoates. Additionally, we demonstrated that this strategy is applicable towards an allylic epoxide substrate to generate [delta]-chiral amine.


Palladium Catalyzed Carbon-nitrogen Bond Formation

Palladium Catalyzed Carbon-nitrogen Bond Formation
Author: Alejandra Domínguez Huerta
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download Palladium Catalyzed Carbon-nitrogen Bond Formation Book in PDF, ePub and Kindle

"This thesis describes the design and development of reductive amination methodologies of unactivated carbon-oxygen bonds using palladium on charcoal as a heterogeneous catalyst. The underlying premise is the transformation of starting materials that can be obtained from bio-renewable resources into commodity chemicals. Specifically, 2-cyclohexen-1-one and phenol were used as lignin building-block surrogates for C-N bond formation. The first chapter places the work developed in this thesis both in a global and a scientific context. Its objective is to provide an overview of our societal needs while describing the latest scientific developments related to this thesis topic. Thus, it begins by exploring the United Nation's Sustainable Goals, followed by an overview of petroleum and lignin chemistry, and finishes with a review on amino acid N-modification. In chapter two, the development of a novel methodology for the N-arylation of [alpha]-amino acids using 2-cyclohexen-1-one is described. Palladium on carbon was chosen as the catalyst, and several reaction conditions were explored to obtain optimal yields. This methodology's attractiveness lies in the absence of an aryl halide or protecting group on the 2-cyclohexen-1-one for the N-arylation to proceed. The reaction requires substoichiometric amounts of base and oxygen as the terminal oxidant. Aliphatic amino acids were ideal substrates for the reaction, and cyclohexanone provided the N-biarylated amino acids in good yields (up to 74%). Chapter three describes efforts to improve the harsh conditions required for the N-arylation of [alpha]-amino acids, resulting in the development of a novel methodology for their N-cyclohexylation in water, at room temperature, using phenol as a coupling partner. The reaction successfully achieves N-cyclohexylation for 17 out of the 20 naturally occurring amino acids without racemization with up to quantitative yields. Furthermore, small peptides were also successful substrates for the reaction. The fourth chapter explores the possibility of applying the latter methodology for the formation of one- and two-component peptide staples using tyrosine as a handle. The one component staple was investigated using acetyl-lysine and acetyl-tyrosine, while the two-component staple was investigated using acetylated-tyrosine 2,2'-(ethylenedioxy)bis(ethylamine). While model substrates proved to couple successfully under previously optimized conditions, concentration and characterization proved to be challenging for working with larger peptides. Additional experiments exploring the possibility of using tyrosine amination as a pH responding hydrogel are also described in this chapter. Finally, chapter five explores the possibility of synthesizing diphenylamines from phenol and ammonia formate as a convenient ammonia surrogate. Seventeen different diarylamines were synthesized with palladium on charcoal as the catalyst, with yields ranging from good to excellent. Notably, water and CO2 were the only byproducts generated from this transformation. Triphenylamine was also obtained in combination with the methodology described in Chapter 1"--


Recent Advances in Copper- and Palladium-catalyzed Carbon-heteroatom and Carbon-carbon Bond-formation

Recent Advances in Copper- and Palladium-catalyzed Carbon-heteroatom and Carbon-carbon Bond-formation
Author: Ryan Alan Altman
Publisher:
Total Pages: 752
Release: 2008
Genre:
ISBN:

Download Recent Advances in Copper- and Palladium-catalyzed Carbon-heteroatom and Carbon-carbon Bond-formation Book in PDF, ePub and Kindle

Metal-catalyzed nucleophilic substitution reactions of aryl halides have become one of the most valuable and useful classes of reactions developed in the last 30 years. Foremost among these processes are the classes of palladium- and copper-catalyzed reactions, which employ heteroatom-based nucleophiles. Herein, newly designed catalyst systems are presented for the palladium- and/or copper-catalyzed nucleophilic substitution reactions of aryl halides with a variety of nucleophiles, including (benz)imidazoles, oxindoles, 2-, 3- and 4-hydroxypyridines, anilines, and aliphatic, benzylic, allylic and propargylic alcohols. In many cases, catalyst optimization and ligand structure are discussed and evaluated. Where applicable, the palladiumand copper-based catalyst systems are contrasted to demonstrate the complementary relationships between the employment of these two metals. Chapter One Chapter Two Chapter Three Chapter Four Chapter Five. Palladium- and Copper-catalyzed Reactions of Imidazoles and Benzimidazoles with Aryl Halides. Orthogonal Selectivity in Copper- and Palladium-catalyzed Reactions of Aryl Halides with Oxindoles. Copper-catalyzed Reactions of Hydroxypyridines and Related Compounds with Aryl Halides. Pyrrole-2-carboxylic Acid as a Ligand for the Copper-catalyzed Reactions of Primary Anilines with Aryl Halides. An Improved Copper-based Catalyst System for the Reactions of Aryl Halides with Aliphatic Alcohols.


The Development of Palladium- and Copper-catalyzed Transformations for the Asymmetric Synthesis of Biologically Active Small Molecules

The Development of Palladium- and Copper-catalyzed Transformations for the Asymmetric Synthesis of Biologically Active Small Molecules
Author: James Thomas Masters
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:

Download The Development of Palladium- and Copper-catalyzed Transformations for the Asymmetric Synthesis of Biologically Active Small Molecules Book in PDF, ePub and Kindle

The continued demand for efficient chemo-, regio-, and stereoselective organic transformations motivates the development of new chemical reactions. Transition metal catalysis represents a powerful method for the construction of carbon-carbon, carbon-hydrogen, and carbon-heteroatom bonds in a highly selective fashion. This dissertation describes the development of several new transition metal-catalyzed organic reactions useful in the preparation of various chiral small molecules, including both fundamental organic "building block" compounds and structurally complex natural products and pharmaceutical agents. We report a new strategy for the synthesis of chiral beta-alkynyl esters, ketones, and sulfones via sequential palladium-catalyzed carbon-carbon bond formation and copper-catalyzed carbon-hydrogen bond formation. The process is operationally straightforward, compatible with a broad range of substrates, and delivers the targets in high yields with excellent levels of enantioselectivity. It is compatible with both oxygen and nitrogen functionality, and this enabled the rapid elaboration of the products into a diverse set of chiral heterocycles. The sequential catalysis protocol was employed in a concise, enantioselective synthesis of AMG 837, a potent agonist of G-protein coupled receptor 40. Recognizing both the biological relevance of chiral alkaloids and the synthetic challenges associated with the construction of quaternary, all-carbon stereocenters, we pursued a palladium-catalyzed asymmetric allylic alkylation that effected carbon-carbon bond formation on prochiral oxindole nucleophiles. Although prior research has demonstrated that allylic alkylation reactions of geminal dicarboxylate electrophiles typically yield branched products as the result of ipso-addition, we identify conditions wherein oxindoles react with a dipivaloyl electrophile to afford linear enol pivalate compounds. A mild hydrolysis reaction converts these products into the aldehyde that formally results from asymmetric conjugate addition to acrolein, a challenging transformation with limited literature precedent. These adducts are established precursors to tricyclic alkaloid scaffolds of pharmaceutical interest. Chiral gamma-heteroatom-substituted cycloalkenones are well-established organic "building blocks" that are widely used in the synthesis of complex molecules. The exposure of meso-1,4-allylic dibenzoates to chiral phosphine-ligated palladium salts in the presence of a potassium nitronate nucleophile promotes a unique oxidative desymmetrization reaction. This process yields enantiopure gamma-benzoyloxy cyclopentenones, cyclohexenones, and cycloheptenones. We describe the elaboration of these products into diverse, enantioenriched oxygen- and nitrogen-substituted cycloalkenones via subsequent palladium-catalyzed allylic alkylation reactions involving heteroatom nucleophiles. Separately, we employ enantiopure gamma-benzoyloxy cyclohexenones in short, asymmetric syntheses of enantio- and diastereomerically diverse epoxyquinoid natural products. We further highlight the utility of palladium catalysis in complex molecule synthesis through the development of a unique, intramolecular carbon-carbon bond-forming reaction that generates a strained enyne and through an asymmetric formal synthesis of aliskiren, a renin inhibitor used in the treatment of hypertension.


Advances in Palladium-catalyzed Carbon-nitrogen Bond Forming Processes

Advances in Palladium-catalyzed Carbon-nitrogen Bond Forming Processes
Author: Rachel Elizabeth Tundel
Publisher:
Total Pages: 136
Release: 2006
Genre:
ISBN:

Download Advances in Palladium-catalyzed Carbon-nitrogen Bond Forming Processes Book in PDF, ePub and Kindle

Chapter 1. Microwave-assisted, palladium-catalyzed C-N bond-forming reactions with aryl/heteroaryl nonaflates/halides and amines using the soluble amine bases DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) and a catalyst system consisting of Pd2dba3 and ligands (XantPhos, 2-dicylcohexylphosphino-2',4',6'-triisopropyl-1,1 '-biphenyl (XPhos) and 2-di-tert-butylphosphino-2',4',6'-triisopropyl-1, '-biphenyl) resulted in good to excellent yields of arylamines in short reaction times. Chapter 2. Using a catalyst comprised of the bulky, electron-rich monophosphine ligand di-tert-Butyl XPhos (2-di-tert-butylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl) and Pd2dba3 with sodium tert-butoxide as the base, amino heterocycles were coupled successfully with aryl/heteroaryl halides in moderate to excellent yields.


Catalytic Methods for Carbon-carbon and Carbon-nitrogen Bond Formation

Catalytic Methods for Carbon-carbon and Carbon-nitrogen Bond Formation
Author: Stephen David Ramgren
Publisher:
Total Pages: 511
Release: 2014
Genre:
ISBN:

Download Catalytic Methods for Carbon-carbon and Carbon-nitrogen Bond Formation Book in PDF, ePub and Kindle

This dissertation describes the study of metal-catalyzed cross-coupling reactions to construct carbon-carbon and carbon-heteroatom bonds. The key feature of much of this work is the use of inexpensive Ni and Fe catalysts to enable the coupling of unconventional electrophilic substrates, specifically aryl O-sulfamates and O-carbamates. The ability to use O-sulfamates and O-carbamates in catalytic processes is notable, as these substrates are readily derived from phenols and can be used for directed arene functionalization. Chapter one provides a summary of the efforts towards using alcohol-based solvents for the Suzuki-Miyaura cross-coupling reaction. Emphasis is placed on the cross-coupling of heterocycles, which are commonly encountered in natural product synthesis and in the pharmaceutical sector. Chapters two, three, and four describe carbon-nitrogen bond forming reactions. Chapter two pertains to the nickel-catalyzed amination of sulfamates, which culminated in the synthesis of the antibacterial drug, linezolid. Chapter three covers the amination of aryl O-carbamates and their use in sequential functionalization/site-selective cross-couplings. Chapter four describes a more user-friendly variant of the amination reaction, which relies on a bench-stable Ni(II) precatalyst, rather than a more commonly used Ni(0) precatalyst. Chapters five, six, and seven focus on carbon-carbon bond formation via Fe-, Ni- and Pd-mediated processes. Chapter five pertains to iron-catalyzed couplings of sulfamates and carbamates to generate sp2-sp3 carbon-carbon bonds. This method can be used to assemble sterically-congested frameworks. Chapter six describes the nickel-catalyzed Suzuki-Miyaura reactions of halides and phenol derivatives in `green' solvents, which was applied to the preparative scale assembly of bis(heterocycles) using low nickel catalyst loadings. Chapter seven pertains to the acetylation of arenes using palladium catalysis, which provides a simple and efficient means for the construction of a variety of aryl methyl ketones.