Development Of Lead Free Piezoelectric Ceramic Resonators For High Frequency Oscillator Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development Of Lead Free Piezoelectric Ceramic Resonators For High Frequency Oscillator Applications PDF full book. Access full book title Development Of Lead Free Piezoelectric Ceramic Resonators For High Frequency Oscillator Applications.

Development of Lead-free Piezoelectric Ceramic Resonators for High-frequency Oscillator Applications

Development of Lead-free Piezoelectric Ceramic Resonators for High-frequency Oscillator Applications
Author: Ho-yan Wong
Publisher:
Total Pages:
Release: 2009
Genre: Oscillators, Electric
ISBN:

Download Development of Lead-free Piezoelectric Ceramic Resonators for High-frequency Oscillator Applications Book in PDF, ePub and Kindle

Because of the good piezoelectric properties and low sintering temperature, CBT-Cu/Ba-0.30 and MBT-Cu/Ba-0.40 have been used to fabricate high-frequency double-layered ceramic resonators. The resonator has a pair of top and bottom electrodes and an inner electrode in between them; all of them are of the same dimensions (2 mm and 3 mm in diameter) and smaller than the lateral dimension of the resonator (~5.4mm {604} 4.5 mm). As the sintering temperature for CBT-Cu/Ba-0.30 and MBT-Cu/Ba-0.40 are below 1000°C, Ag70/Pd30 inner electrode, instead of Pt, can be used for cofiring with the ceramics, and hence there is a great saving in the production cost. Our results reveal that the spurious vibrations of the resonators have been successfully suppressed. This should be party due to the smaller electrodes which is one of the typical approaches in the energy trapping technique to confine the vibrations in the electroded region and hence to reduce the standing waves formed by the reflected waves from the sample edge. This should also partly due to the second harmonic thickness extension mode vibrations. Our results also reveal that although the MBT-Cu/Ba-0.4 ceramic has better piezoelectric properties, its performance as a resonator is not as good as CBT-Cu/Ba-0.30. For the CBT-Cu/Ba-0.30 double-layered resonator, it has a relatively "clean" resonance response and a lower temperature coefficient of frequency (TCF =-39.3 ppm/°C). It also has a relatively low impedance at resonance (14 and 30] for 3-mm and 2-mm electrodes, respectively), which is very close to the value for a commercially available PZT resonator. These suggest that the CBT-Cu/Ba-0.30 lead-free double-layered resonators have good potential to replace the lead-based resonators.


Piezoelectric Ceramics

Piezoelectric Ceramics
Author:
Publisher:
Total Pages: 127
Release: 1996
Genre:
ISBN:

Download Piezoelectric Ceramics Book in PDF, ePub and Kindle


Piezoelectric Resonators and Their Applications

Piezoelectric Resonators and Their Applications
Author: Jiří Zelenka
Publisher: North-Holland
Total Pages: 301
Release: 1986
Genre: Technology & Engineering
ISBN: 9780444995162

Download Piezoelectric Resonators and Their Applications Book in PDF, ePub and Kindle

Piezoelectric resonators rank among the traditional electronic components that have been used for many years in radioelectrics, time-keeping and, more recently, in microprocessor-based devices. Their ever-increasing range of application has been made possible by gradual improvements in the basic resonator parameters. This book is a compendium of studies on bulk-wave vibrating piezoelectric resonators. First published in Czech in 1983, this English edition has been adapted to include the latest concepts and developments. Important elastic, dielectric and piezoelectric parameters of piezoelectric resonators are reviewed, and basic characteristics of modern piezoelectric crystals and piezoceramic materials derived. In the section on vibration theory, the equations of motion and their solutions are presented; the resonant frequency equations of the flexural, length extensional and torsional modes of vibrations of the bars and the thickness vibrations of the plates are derived. Approximate methods of calculation for contoured rectangular plates are also considered. The electrical equivalent circuit of piezoelectric resonator is then derived for various shapes of bars and plates. The properties of the electrical equivalent circuit are described with regard to the influence of the temperature and the non-linear properties of piezoelectric crystals. The methods of measurement of resonant frequency and dynamic capacitance are presented and related to the equivalent electrical circuit of piezoelectric resonators. One part of the book is devoted to basic types of piezoelectric quartz, LiNbO3 and LiTaO3 resonators. Special attention is given to the possibility of adjusting the resonant frequency/temperature characteristics by selecting a suitable orientation angle and dimension ratio of the resonator plate. A brief description of multi-resonator structures is included. Production technology and comments on resonator applications in wave filters and crystal oscillators are also discussed. The book is intended for engineers in research and development departments in plants producing piezoelectric resonators, as well as for those who utilize piezoelectric units in various electronic and measuring devices. University and postgraduate students may find it a useful source of information in a number of electrotechnical and electronic studies.


Piezoelectric Ceramics

Piezoelectric Ceramics
Author: Ltd Apc International
Publisher: Apc International, Limited
Total Pages: 114
Release: 2011
Genre: Technology & Engineering
ISBN: 9780615565033

Download Piezoelectric Ceramics Book in PDF, ePub and Kindle

APC International, Ltd.'s textbook on the principles and applications of piezoelectric ceramics covers: general principles of piezoelectricity and behavior of piezoelectric ceramic elements fundamental mathematics of piezoelectricity traditional and experimental applications for piezoelectric materials, and related physical principles for each application: audible sound producers, flow meters, fluid level sensors, motors, pumps, delay lines, transformers, other apparatus introduction to single crystals, composites, and other latest-generation piezoelectric materials Contents Introduction piezoelectricity / piezoelectric constants behavior / stability of piezoelectric ceramic elements new materials: relaxors / single crystals / others characteristics of piezoelectric materials from APC International, Ltd. Generators generators solid state batteries Sensors axial sensors flexional sensors special designs and applications: composites / SAW sensors / others Actuators axial and transverse actuators: simple / compound (stack) / multilayer flexional actuators / flextensional devices applications for piezoelectric actuators Transducers audible sound transducers generating ultrasonic vibrations in liquids or solids transmitting ultrasonic signals in air or water flow meters / fluid level sensors / delay lines / transformers / composites Miscellaneous securing a piezoelectric ceramic element attaching electrical leads testing performance Note: This is a 2nd edition to APC's textbook published in 2002. Updates in the 2nd edition reflect changes to APC's product lines and corrections outlined on the errata sheet distributed with the 2002 edition.


Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting
Author: Alper Erturk
Publisher: John Wiley & Sons
Total Pages: 377
Release: 2011-04-04
Genre: Technology & Engineering
ISBN: 1119991358

Download Piezoelectric Energy Harvesting Book in PDF, ePub and Kindle

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.


Lead-Free Piezoelectrics

Lead-Free Piezoelectrics
Author: Shashank Priya
Publisher: Springer Science & Business Media
Total Pages: 521
Release: 2011-11-19
Genre: Technology & Engineering
ISBN: 1441995986

Download Lead-Free Piezoelectrics Book in PDF, ePub and Kindle

Ecological restrictions in many parts of the world are demanding the elimination of Pb from all consumer items. At this moment in the piezoelectric ceramics industry, there is no issue of more importance than the transition to lead-free materials. The goal of Lead-Free Piezoelectrics is to provide a comprehensive overview of the fundamentals and developments in the field of lead-free materials and products to leading researchers in the world. The text presents chapters on demonstrated applications of the lead-free materials, which will allow readers to conceptualize the present possibilities and will be useful for both students and professionals conducting research on ferroelectrics, piezoelectrics, smart materials, lead-free materials, and a variety of applications including sensors, actuators, ultrasonic transducers and energy harvesters.


Temperature-Compensated and High-Q Piezoelectric Aluminum Nitride Lamb Wave Resonators for Timing and Frequency Control Applications

Temperature-Compensated and High-Q Piezoelectric Aluminum Nitride Lamb Wave Resonators for Timing and Frequency Control Applications
Author: Chih-Ming Lin
Publisher:
Total Pages: 384
Release: 2013
Genre:
ISBN:

Download Temperature-Compensated and High-Q Piezoelectric Aluminum Nitride Lamb Wave Resonators for Timing and Frequency Control Applications Book in PDF, ePub and Kindle

The explosive development of wireless and mobile communication systems has lead to rapid technology innovation in component performance, complementary metal-oxide semiconductor (CMOS) compatible fabrication techniques, and system improvement to satisfy requirements for faster signal processing, cost efficiency, chip miniaturization, and low power consumption. The demands for the high-performance communication systems whose fundamentals are precise timing and frequency control have driven the current research interests to develop advanced reference oscillators and radio frequency (RF) bandpass filters. In turn a promising microelectromechanical systems (MEMS) resonator technology is required to achieve the ultimate goal. That is, micromechanical vibrating resonators with high quality factor (Q) and good frequency-temperature stability at high series resonance frequency (fs) are the required fundamental components for a high-performance wireless communication system. Recently, Lamb wave mode propagating in piezoelectric thin plates has attracted great attention for designs of the electroacoustic resonators since it combines the advantages of bulk acoustic wave (BAW) and surface acoustic wave (SAW): high phase velocity and multiple frequency excitation by an interdigital transducer (IDT). More specifically, the Lamb wave resonator (LWR) based on an aluminum nitride (AlN) thin film has attracted many attentions because it can offer the high resonance frequency, small temperature-induced frequency drift, low motional resistance, and CMOS compatibility. The lowest-order symmetric (S0) Lamb wave mode propagation in the AlN thin plate is particularly preferred because it exhibits a phase velocity close to 10,000 m/s, a low dispersive phase velocity characteristic, and a moderate electromechanical coupling coefficient. However, the uncompensated AlN LWR shows a first-order temperature coefficient of frequency (TCF) of approximately -25 ppm/C. This level of the temperature stability is unsuitable for any timing application. In addition, the Q of the AlN LWR is degraded to several hundred while the IDT finger width is downscaled to a nanometer scale to raise the resonance frequency up to a few GHz. This dissertation presents comprehensive analytical and experimental results on a new class of temperature-compensated and high-Q piezoelectric AlN LWRs. The temperature compensation of the AlN LWR using the S0 Lamb wave mode is achieved by adding a layer of silicon dioxide (SiO2) with an appropriate thickness ratio to the AlN thin film, and the AlN/SiO2 LWRs can achieve a low first-order TCF at room temperature. Based on the multilayer plate composed of a 1-um-thick AlN film and a 0.83-um-thick SiO2 layer, a temperature-compensated LWR operating at a series resonance frequency of 711 MHz exhibits a zero first-order TCF and a small second-order TCF of -21.5 ppb/C^2 at its turnover temperature, 18.05 C. The temperature dependence of fractional frequency variation is less than 250 parts per million (ppm) over a wide temperature range from -55 to 125 C. In addition to the temperature compensation at room temperature, the thermal compensation of the AlN LWRs is experimentally demonstrated at high temperatures. By varying the normalized AlN and SiO2 thicknesses to the wavelength, the turnover temperature can be designed at high temperatures and the AlN LWRs are temperature-compensated at 214, 430, and 542 C, respectively. The temperature-compensated AlN/SiO2 LWRs are promising for a lot of applications including thermally stable oscillators, bandpass filters, and sensors at room temperature as well as high temperatures. The influences of the bottom electrode upon the characteristics of the LWRs utilizing the S0 Lamb wave mode in the AlN thin plate are theoretically and experimentally studied. Employment of a floating bottom electrode for the LWR reduces the static capacitance in the AlN membrane and accordingly enhances the effective coupling coefficient. The floating bottom electrode simultaneously offers a large coupling coefficient and a simple fabrication process than the grounded bottom electrode but the transduction efficiency is not sacrificed. In contrast to those with the bottom electrode, an AlN LWR with no bottom electrode shows a high Q of around 3,000 since it gets rid of the electrical loss in the metal-to-resonator interface. In addition, it exhibits better power handling capacity than those with the bottom electrode since less thermal nonlinearity induced by the self-heating exists in the resonators. In order to boost the Q, a new class of the AlN LWRs using suspended convex edges is introduced in this dissertation for the first time. The suspended convex edges can efficiently reflect the Lamb waves back towards the transducer as well as confine the mechanical energy in the resonant body. Accordingly the mechanical energy dissipation through the support tethers is significantly minimized and the Q can be markedly enhanced. More specifically, the measured frequency response of a 491.8-MHz LWR with suspended biconvex edges yields a Q of 3,280 which represents a 2.6x enhancement in Q over a 517.9-MHz LWR based on the same AlN thin plate but with the suspended flat edges. The suspended convex edges can efficiently confine mechanical energy in the LWR and reduce the energy dissipation through the support tethers without increasing the motional impedance of the resonator. In addition, the radius of curvature of the suspended convex edges and the AlN thickness normalized to the wavelength can be further optimized to simultaneously obtain high Q, low motional impedance, and large effective coupling coefficient. To further enhance the Q of the LWR, a composite plate including an AlN thin film and an epitaxial cubic silicon carbide (3C-SiC) layer is introduced to enable high-Q and high-frequency micromechanical resonators utilizing high-order Lamb wave modes. The use of the epitaxial 3C-SiC layer is attractive as SiC crystals have been theoretically proven to have an exceptionally large fs and Q product due to its low acoustic loss characteristic at microwave frequencies. In addition, AlN and 3C-SiC have well-matched mechanical and electrical properties, making them a suitable material stack for the electroacoustic resonators. The epitaxial 3C-SiC layer not only provides the micromechanical resonators with a low acoustic loss layer to boost their Q but also enhances the electromechanical coupling coefficients of some high-order Lamb waves in the AlN/3C-SiC composite plate. A micromachined electroacoustic resonator utilizing the third quasi-symmetric (QS3) Lamb wave mode in the AlN/3C-SiC composite plate exhibits a Q of 5,510 at 2.92 GHz, resulting in the highest fs and Q product, 1.61x10^13 Hz, among suspended piezoelectric thin film resonators to date.