Development Of Computational Methods For The Analysis Of Proteomics And Next Generation Sequencing Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development Of Computational Methods For The Analysis Of Proteomics And Next Generation Sequencing Data PDF full book. Access full book title Development Of Computational Methods For The Analysis Of Proteomics And Next Generation Sequencing Data.

Computational Methods for Next Generation Sequencing Data Analysis

Computational Methods for Next Generation Sequencing Data Analysis
Author: Ion Mandoiu
Publisher: John Wiley & Sons
Total Pages: 464
Release: 2016-09-12
Genre: Computers
ISBN: 1119272165

Download Computational Methods for Next Generation Sequencing Data Analysis Book in PDF, ePub and Kindle

Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.


Computational Methods for the Analysis of Next Generation Sequencing Data

Computational Methods for the Analysis of Next Generation Sequencing Data
Author: Wei Wang
Publisher:
Total Pages: 186
Release: 2014
Genre:
ISBN:

Download Computational Methods for the Analysis of Next Generation Sequencing Data Book in PDF, ePub and Kindle

Recently, next generation sequencing (NGS) technology has emerged as a powerful approach and dramatically transformed biomedical research in an unprecedented scale. NGS is expected to replace the traditional hybridization-based microarray technology because of its affordable cost and high digital resolution. Although NGS has significantly extended the ability to study the human genome and to better understand the biology of genomes, the new technology has required profound changes to the data analysis. There is a substantial need for computational methods that allow a convenient analysis of these overwhelmingly high-throughput data sets and address an increasing number of compelling biological questions which are now approachable by NGS technology. This dissertation focuses on the development of computational methods for NGS data analyses. First, two methods are developed and implemented for detecting variants in analysis of individual or pooled DNA sequencing data. SNVer formulates variant calling as a hypothesis testing problem and employs a binomial-binomial model to test the significance of observed allele frequency by taking account of sequencing error. SNVerGUI is a GUI-based desktop tool that is built upon the SNVer model to facilitate the main users of NGS data, such as biologists, geneticists and clinicians who often lack of the programming expertise. Second, collapsing singletons strategy is explored for associating rare variants in a DNA sequencing study. Specifically, a gene-based genome-wide scan based on singleton collapsing is performed to analyze a whole genome sequencing data set, suggesting that collapsing singletons may boost signals for association studies of rare variants in sequencing study. Third, two approaches are proposed to address the 3'UTR switching problem. PolyASeeker is a novel bioinformatics pipeline for identifying polyadenylation cleavage sites from RNA sequencing data, which helps to enhance the knowledge of alternative polyadenylation mechanisms and their roles in gene regulation. A change-point model based on a likelihood ratio test is also proposed to solve such problem in analysis of RNA sequencing data. To date, this is the first method for detecting 3'UTR switching without relying on any prior knowledge of polyadenylation cleavage sites.


Computational Methods for the Analysis of Genomic Data and Biological Processes

Computational Methods for the Analysis of Genomic Data and Biological Processes
Author: Francisco A. Gómez Vela
Publisher: MDPI
Total Pages: 222
Release: 2021-02-05
Genre: Medical
ISBN: 3039437712

Download Computational Methods for the Analysis of Genomic Data and Biological Processes Book in PDF, ePub and Kindle

In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality.


Computational Methodologies for Genomics and Proteomics Data Analysis

Computational Methodologies for Genomics and Proteomics Data Analysis
Author: Feng Xu, Dr
Publisher: Open Dissertation Press
Total Pages:
Release: 2017-01-26
Genre:
ISBN: 9781361023051

Download Computational Methodologies for Genomics and Proteomics Data Analysis Book in PDF, ePub and Kindle

This dissertation, "Computational Methodologies for Genomics and Proteomics Data Analysis" by Feng, Xu, 徐峰, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: With the rapid development of next generation sequencing technology, comprehensive studies of biological systems have accumulated a large amount of high-throughput OMICs data, including genomics, proteomics, transcriptomics and metabolomics data etc. These invaluable datasets encourage scientists to design proper analysis methodology so as to explore the biological secret hidden behind these data. In this dissertation, I introduce the general information of genomics, proteomics data and the current public source of corresponding high-throughput OMICs data. Then describe the four main methodologies developed by me in my Ph.D. period, which could be utilized to analysis the genomics data and proteomics data. Firstly, based on the genomics sequencing data, a novel binomial distribution based model, namely FaSD, is utilized to call the Single Nucleic Variants. The tool could call the SNVs fast and accurate especially when the sequencing depth is low. Further, on the basis of the FaSD model, an efficacious algorithm FaSDsomatic is designed to call somatic mutations utilizing the genomic sequencing data of both tumor and normal sample of a patient. Benchmarked by somatic database and results of high-depth sequencing data, FaSD-somatic has the best overall performance compared with other state-of-art tools. Then, both Human-HBV alignment based strategy and HBV-Human alignment based strategy are designed to detect the integration sites between human and HBV genome in both normal and tumor sample of 5 HCC patients. Validated by previous publications, the integration sites found by me are reliable. In the end, a series of bioinformatics analysis is carried out on the proteomics data of H. pylori with and without CBS treatment. The analysis identifies the function of Bi-binding proteins, the potential hub targets of CBS, and the binding motif of Bi (III)-based compounds etc. The methodologies describe here might help researchers to broaden their knowledge on the biological systems by analyzing both genomics and proteomics data. DOI: 10.5353/th_b5689286 Subjects: Proteomics - Data processing Genomics - Data processing


Biological Sequence Analysis

Biological Sequence Analysis
Author: Richard Durbin
Publisher: Cambridge University Press
Total Pages: 372
Release: 1998-04-23
Genre: Science
ISBN: 113945739X

Download Biological Sequence Analysis Book in PDF, ePub and Kindle

Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.


Computational Methods for Analysis of Single Molecule Sequencing Data

Computational Methods for Analysis of Single Molecule Sequencing Data
Author: Ehsan Haghshenas
Publisher:
Total Pages: 127
Release: 2020
Genre:
ISBN:

Download Computational Methods for Analysis of Single Molecule Sequencing Data Book in PDF, ePub and Kindle

Next-generation sequencing (NGS) technologies paved the way to a significant increase in the number of sequenced genomes, both prokaryotic and eukaryotic. This increase provided an opportunity for considerable advancement in genomics and precision medicine. Although NGS technologies have proven their power in many applications such as de novo genome assembly and variation discovery, computational analysis of the data they generate is still far from being perfect. The main limitation of NGS technologies is their short read length relative to the lengths of (common) genomic repeats. Today, newer sequencing technologies (known as single-molecule sequencing or SMS) such as Pacific Biosciences and Oxford Nanopore are producing significantly longer reads, making it theoretically possible to overcome the difficulties imposed by repeat regions. For instance, for the first time, a complete human chromosome was fully assembled using ultra-long reads generated by Oxford Nanopore. Unfortunately, long reads generated by SMS technologies are characterized by a high error rate, which prevents their direct utilization in many of the standard downstream analysis pipelines and poses new computational challenges. This motivates the development of new computational tools specifically designed for SMS long reads. In this thesis, we present three computational methods that are tailored for SMS long reads. First, we present lordFAST, a fast and sensitive tool for mapping noisy long reads to a reference genome. Mapping sequenced reads to their potential genomic origin is the first fundamental step for many computational biology tasks. As an example, in this thesis, we show the success of lordFAST to be employed in structural variation discovery. Next, we present the second tool, CoLoRMap, which tackles the high level of base-level errors in SMS long reads by providing a means to correct them using a complementary set of NGS short reads. This integrative use of SMS and NGS data is known as hybrid technique. Finally, we introduce HASLR, an ultra-fast hybrid assembler that uses reads generated by both technologies to efficiently generate accurate genome assemblies. We demonstrate that HASLR is not only the fastest assembler but also the one with the lowest number of misassemblies on all the samples compared to other tested assemblers. Furthermore, the generated assemblies in terms of contiguity and accuracy are on par with the other tools on most of the samples.


Computational Methods for Solving Next Generation Sequencing Challenges

Computational Methods for Solving Next Generation Sequencing Challenges
Author: Tamer Ali Aldwairi
Publisher:
Total Pages: 89
Release: 2014
Genre:
ISBN:

Download Computational Methods for Solving Next Generation Sequencing Challenges Book in PDF, ePub and Kindle

In this study we build solutions to three common challenges in the fields of bioinformatics through utilizing statistical methods and developing computational approaches. First, we address a common problem in genome wide association studies, which is linking genotype features within organisms of the same species to their phenotype characteristics. We specifically studied FHA domain genes in Arabidopsis thaliana distributed within Eurasian regions by clustering those plants that share similar genotype characteristics and comparing that to the regions from which they were taken. Second, we also developed a tool for calculating transposable element density within different regions of a genome. The tool is built to utilize the information provided by other transposable element annotation tools and to provide the user with a number of options for calculating the density for various genomic elements such as genes, piRNA and miRNA or for the whole genome. It also provides a detailed calculation of densities for each family and sub-family of the transposable elements. Finally, we address the problem of mapping multi reads in the genome and their effects on gene expression. To accomplish this, we implemented methods to determine the statistical significance of expression values within the genes utilizing both a unique and multi-read weighting scheme. We believe this approach provides a much more accurate measure of gene expression than existing methods such as discarding multi reads completely or assigning them randomly to a set of best assignments, while also providing a better estimation of the proper mapping locations of ambiguous reads. Overall, the solutions we built in these studies provide researchers with tools and approaches that aid in solving some of the common challenges that arise in the analysis of high throughput sequence data.


Statistical and Computational Methods for Analyzing High-Throughput Genomic Data

Statistical and Computational Methods for Analyzing High-Throughput Genomic Data
Author: Jingyi Li
Publisher:
Total Pages: 226
Release: 2013
Genre:
ISBN:

Download Statistical and Computational Methods for Analyzing High-Throughput Genomic Data Book in PDF, ePub and Kindle

In the burgeoning field of genomics, high-throughput technologies (e.g. microarrays, next-generation sequencing and label-free mass spectrometry) have enabled biologists to perform global analysis on thousands of genes, mRNAs and proteins simultaneously. Extracting useful information from enormous amounts of high-throughput genomic data is an increasingly pressing challenge to statistical and computational science. In this thesis, I will address three problems in which statistical and computational methods were used to analyze high-throughput genomic data to answer important biological questions. The first part of this thesis focuses on addressing an important question in genomics: how to identify and quantify mRNA products of gene transcription (i.e., isoforms) from next-generation mRNA sequencing (RNA-Seq) data? We developed a statistical method called Sparse Linear modeling of RNA-Seq data for Isoform Discovery and abundance Estimation (SLIDE) that employs probabilistic modeling and L1 sparse estimation to answer this ques- tion. SLIDE takes exon boundaries and RNA-Seq data as input to discern the set of mRNA isoforms that are most likely to present in an RNA-Seq sample. It is based on a linear model with a design matrix that models the sampling probability of RNA-Seq reads from different mRNA isoforms. To tackle the model unidentifiability issue, SLIDE uses a modified Lasso procedure for parameter estimation. Compared with existing deterministic isoform assembly algorithms, SLIDE considers the stochastic aspects of RNA-Seq reads in exons from different isoforms and thus has increased power in detecting more novel isoforms. Another advantage of SLIDE is its flexibility of incorporating other transcriptomic data into its model to further increase isoform discovery accuracy. SLIDE can also work downstream of other RNA-Seq assembly algorithms to integrate newly discovered genes and exons. Besides isoform discovery, SLIDE sequentially uses the same linear model to estimate the abundance of discovered isoforms. Simulation and real data studies show that SLIDE performs as well as or better than major competitors in both isoform discovery and abundance estimation. The second part of this thesis demonstrates the power of simple statistical analysis in correcting biases of system-wide protein abundance estimates and in understanding the rela- tionship between gene transcription and protein abundances. We found that proteome-wide surveys have significantly underestimated protein abundances, which differ greatly from previously published individual measurements. We corrected proteome-wide protein abundance estimates by using individual measurements of 61 housekeeping proteins, and then found that our corrected protein abundance estimates show a higher correlation and a stronger linear relationship with mRNA abundances than do the uncorrected protein data. To estimate the degree to which mRNA expression levels determine protein levels, it is critical to measure the error in protein and mRNA abundance data and to consider all genes, not only those whose protein expression is readily detected. This is a fact that previous proteome-widely surveys ignored. We took two independent approaches to re-estimate the percentage that mRNA levels explain in the variance of protein abundances. While the percentages estimated from the two approaches vary on different sets of genes, all suggest that previous protein-wide surveys have significantly underestimated the importance of transcription. In the third and final part, I will introduce a modENCODE (the Model Organism ENCyclopedia Of DNA Elements) project in which we compared developmental stages, tis- sues and cells (or cell lines) of Drosophila melanogaster and Caenorhabditis elegans, two well-studied model organisms in developmental biology. To understand the similarity of gene expression patterns throughout their development time courses is an interesting and important question in comparative genomics and evolutionary biology. The availability of modENCODE RNA-Seq data for different developmental stages, tissues and cells of the two organisms enables a transcriptome-wide comparison study to address this question. We undertook a comparison of their developmental time courses and tissues/cells, seeking com- monalities in orthologous gene expression. Our approach centers on using stage/tissue/cell- associated orthologous genes to link the two organisms. For every stage/tissue/cell in each organism, its associated genes are selected as the genes capturing specific transcriptional activities: genes highly expressed in that stage/tissue/cell but lowly expressed in a few other stages/tissues/cells. We aligned a pair of D. melanogaster and C. elegans stages/tissues/cells by a hypergeometric test, where the test statistic is the number of orthologous gene pairs associated with both stages/tissues/cells. The test is against the null hypothesis that the two stages/tissues/cells have independent sets of associated genes. We first carried out the alignment approach on pairs of stages/tissues/cells within D. melanogaster and C. elegans respectively, and the alignment results are consistent with previous findings, supporting the validity of this approach. When comparing fly with worm, we unexpectedly observed two parallel collinear alignment patterns between their developmental timecourses and several interesting alignments between their tissues and cells. Our results are the first findings regarding a comprehensive comparison between D. melanogaster and C. elegans time courses, tissues and cells.


Evolution of Translational Omics

Evolution of Translational Omics
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 354
Release: 2012-09-13
Genre: Science
ISBN: 0309224187

Download Evolution of Translational Omics Book in PDF, ePub and Kindle

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.