Development Of An Air Stable High Energy Density Printed Silver Oxide Battery For Printed Electronics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development Of An Air Stable High Energy Density Printed Silver Oxide Battery For Printed Electronics PDF full book. Access full book title Development Of An Air Stable High Energy Density Printed Silver Oxide Battery For Printed Electronics.

Development of an Air-stable, High Energy Density Printed Silver Oxide Battery for Printed Electronics

Development of an Air-stable, High Energy Density Printed Silver Oxide Battery for Printed Electronics
Author: Kyle Braam
Publisher:
Total Pages: 116
Release: 2014
Genre:
ISBN:

Download Development of an Air-stable, High Energy Density Printed Silver Oxide Battery for Printed Electronics Book in PDF, ePub and Kindle

Printed batteries are an emerging battery technology that has the potential to enable the production of cheap, small form factor, flexible batteries capable of powering a diverse set of existing and emerging applications such as RFID tags, flexible displays, and distributed sensors. Partially printed battery systems have been demonstrated with various chemistries, but what is needed is a low cost, air stable method of fully printing a high energy density battery. The silver oxide chemistry is attractive for developing a printed battery as this chemistry has demonstrated high energy densities and is capable of air stable fabrication processes due to its aqueous based chemistry. To facilitate the advancement of this technology, material components and printing techniques need to be developed to demonstrate a printed silver oxide battery. In this thesis, I will present a printed, high energy density silver oxide battery using stencil printing. A key development of this work is the demonstration of a novel photopolymerized polyacrylic acid separator layer. The mechanical and conductivity properties of this layer are characterized and optimized for an alkaline silver oxide battery. The incorporation of this layer has enabled a printed battery capable of high rates of discharge. The batteries show no difference in discharge upon flexing at a bend radius of 1.0 cm, indicating their potential in flexible applications. The fabricated batteries have demonstrated high energy densities of 10 mWhr cm −3 and areal capacities of 5.4 mAhr cm−2, which satisfies the power and capacity requirements for most of the proposed applications. In addition, we have examined several printed encapsulation schemes (epoxy and silicone caulk) for encapsulating an alkaline battery.


Printed Batteries

Printed Batteries
Author: Senentxu Lanceros-Méndez
Publisher: John Wiley & Sons
Total Pages: 256
Release: 2018-02-21
Genre: Technology & Engineering
ISBN: 1119287898

Download Printed Batteries Book in PDF, ePub and Kindle

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.


Screen Printing Technology for Energy Devices

Screen Printing Technology for Energy Devices
Author: Andreas Willfahrt
Publisher: Linköping University Electronic Press
Total Pages: 106
Release: 2019-03-05
Genre:
ISBN: 9176852741

Download Screen Printing Technology for Energy Devices Book in PDF, ePub and Kindle

The technical application of screen and stencil printing has been state of the art for decades. As part of the subtractive production process of printed circuit boards, for instance, screen and stencil printing play an important role. With the end of the 20th century, another field has opened up with organic electronics. Since then, more and more functional layers have been produced using printing methods. Printed electronics devices offer properties that give almost every freedom to the creativity of product development. Flexibility, low weight, use of non-toxic materials, simple disposal and an enormous number of units due to the production process are some of the prominent keywords associated with this field. Screen printing is a widely used process in printed electronics, as this process is very flexible with regard to the materials that can be used. In addition, a minimum resolution of approximately 30 µm is sufficiently high. The ink film thickness, which can be controlled over a wide range, is an extremely important advantage of the process. Depending on the viscosity, layer thicknesses of several hundred nanometres up to several hundred micrometres can be realised. The conversion and storage of energy became an increasingly important topic in recent years. Since regenerative energy sources, such as photovoltaics or wind energy, often supply energy intermittently, appropriate storage systems must be available. This applies to large installations for the power supply of society, but also in the context of autarkic sensors, such as those used in the Internet of Things or domestic/industrial automation. A combination of micro-energy converters and energy storage devices is an adequate concept for providing energy for such applications. In this thesis the above mentioned keywords are addressed and the feasibility of printed thermoelectric energy converters and supercapacitors as energy storage devices are investigated. The efficiency of thermoelectric generators (TEG) is low, but in industrial environments, for example, a large amount of unused low temperature heat energy can be found. If the production costs of TEGs are low, conversion of this unused heat energy can contribute to increasing system efficiency. Additionally, printing of supercapacitor energy storage devices increases the usability of the TEG. It is appropriate to use both components as complementary parts in an energy system. Den tekniska tillämpningen av skärm- och stencilutskrift har varit toppmoderna i årtionden. Som en del av den subtraktiva produktionsprocessen av tryckta kretskort spelar exempelvis skärm- och stencilutskrift en viktig roll. I slutet av 1900-talet har ett annat fält öppnat med organisk elektronik. Sedan dess har allt fler funktionella lager producerats med hjälp av tryckmetoder. Tryckta elektronikanordningar erbjuder egenskaper som ger nästan all frihet till kreativiteten i produktutvecklingen. Flexibilitet, låg vikt, användning av giftfria material, enkelt bortskaffande och ett enormt antal enheter på grund av produktionsprocessen är några av de framträdande nyckelord som hör till detta område. Skärmtryck är en allmänt använd process i tryckt elektronik, eftersom processen är mycket flexibel med avseende på material som kan användas. Dessutom är en minsta upplösning på cirka 30 µm tillräckligt bra. Bläckfilmens tjocklek, som kan styras över ett brett område, är en extremt viktig fördel med processen. Beroende på viskositeten kan skikttjockleken på flera hundra nanometer upp till flera hundra mikrometer realiseras. Energikonvertering och lagring har blivit ett allt viktigare ämne de senaste åren. Eftersom regenerativa energikällor, såsom fotovoltaik eller vindkraft, ofta levererar energi intermittent, måste lämpliga lagringssystem vara tillgängliga. Detta gäller stora installationer för samhällets strömförsörjning, men också inom ramen för autarkiska sensorer, som de som används i saker av saker eller inhemsk / industriell automation. En kombination av mikroenergiomvandlare och energilagringsenheter är ett lämpligt koncept för att tillhandahålla energi för sådana applikationer. I denna avhandling behandlas ovan nämnda nyckelord. Genomförbarhet av tryckta termoelektriska energiomvandlare och superkapacitorer som energilagringsenheter undersöks. Effektiviteten hos termoelektriska generatorer (TEG) är låg, men i industriella miljöer kan exempelvis en stor mängd oanvänd låg temperatur värmeenergi hittas. Om produktionskostnaderna för TEG är låga kan konvertering av denna oanvända värmeenergi bidra till ökad systemeffektivitet. Dessutom ökar utskrift av superkapacitorer användbarheten hos TEG. Det är lämpligt att använda båda komponenterna.


Printed Electronics Technologies

Printed Electronics Technologies
Author: Wei Wu
Publisher: Royal Society of Chemistry
Total Pages: 685
Release: 2022-07-20
Genre: Technology & Engineering
ISBN: 1839167181

Download Printed Electronics Technologies Book in PDF, ePub and Kindle

Modern printing technology has paved the way for the fabrication of thin inexpensive electronics and is now established as a topic taught on advanced level courses across materials science and engineering. The properties of printed electronics, such as thin-form factor, flexibility, stretchability, portability, and rollability mean that they have a wide range of applications, including in wearable devices, smart packaging, healthcare, and the automotive industry. This book describes the key printing technologies for printed electronics. Chapters cover principles and mechanisms, techniques, inorganic and organic materials, substrates, post-treatment and applications of printed electronics technologies. Written by a leader in the field, this title will be essential reading for students on courses across materials science, electronics science, manufacturing and engineering, as well as those with an interest in printed electronics.


Printed Batteries

Printed Batteries
Author: Senentxu Lanceros-Méndez
Publisher: John Wiley & Sons
Total Pages: 274
Release: 2018-02-23
Genre: Technology & Engineering
ISBN: 111928788X

Download Printed Batteries Book in PDF, ePub and Kindle

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.


Materials for Sustainable Energy Storage at the Nanoscale

Materials for Sustainable Energy Storage at the Nanoscale
Author: Fabian Ifeanyichukwu Ezema
Publisher: CRC Press
Total Pages: 747
Release: 2023-07-21
Genre: Science
ISBN: 1000894185

Download Materials for Sustainable Energy Storage at the Nanoscale Book in PDF, ePub and Kindle

The book Materials for Sustainable Energy Storage Devices at the Nanoscale anticipates covering all electrochemical energy storage devices such as supercapacitors, lithium-ion batteries (LIBs), and fuel cells, transformation and enhancement materials for solar cells, photocatalysis, etc. The focal objective of the book is to deliver stunning and current information to the materials application at nanoscale to researchers and scientists in our contemporary time towardthe enhancement of energy conversion and storage devices. However, the contents of the proposed book, Materials for Sustainable Energy Storage at the Nanoscale, will cover various fundamental principles and wide knowledge of different energy conversion and storage devices with respect to their advancement due to the emergence of nanoscale materials for sustainable storage devices. This book is targeted to be award-winning as well as a reference book for researchers and scientists working on different types of nanoscale materials-based energy storage and conversion devices. Features Comprehensive overview of energy storage devices, an important field of interest for researchers worldwide Explores the importance and growing impact of batteries and supercapacitors Emphasizes the fundamental theories, electrochemical mechanism, and its computational view point and discusses recent developments in electrode designing based on nanomaterials, separators, and fabrication of advanced devices and their performances Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He earned a PhD in Physics and Astronomy from the University of Nigeria, Nsukka. His research focused on several areas of Materials Science, from synthesis and characterizations of particles and thin-film materials through chemical routes with emphasis on energy applications. For the last 15 years, he has been working on energy conversion and storage (cathodes, anodes, supercapacitors, solar cells, among others), including novel methods of synthesis, characterization and evaluation of the electrochemical and optical properties. He has published about 180 papers in various international journals and given over 50 talks at various conferences. His h-index is 21 with over 1500 citations and he has served as reviewer for several high impact journals and as an editorial board member. Dr. M.Anusuya, M.Sc., M.Phil., B.Ed., PhD is specialized in Material science, Thin Film Technology, Nano Science, and Crystallography. She is working as a Registrar of Indra Ganesan Group of Institutions, Trichy, Tamilnadu, India. Earlier to this, she served as a Vice-Principal at Trichy Engineering College, Trichy, Tamilnadu, India.. Being an administrator and teacher, with more than 25 years’ experience, for her perpetual excellence in academics she has been recognized with many awards. She has received over 45 awards in Academic and Social Activity. She has published more than 30 research papers in National and International journals, 7 chapters in edited books, 5 patents, presented 50 papers in the conferences and organized more than 200 webinars, both national and internationally. Dr Assumpta C. Nwanya is a Lecturer and a FLAIR (Future Leaders - African Independent Research) Scholar at the Department of Physics and Astronomy, University of Nigeria, Nsukka. She obtained her PhD in 2017 (University of Nigeria, Nsukka) with specialisation in the synthesis of nanostructured materials for applications in photovoltaics and electrochemical energy storage (batteries and supercapacitors) as well as for sensing. She was a Postdoctoral Fellow under the UNESCO-University of South Africa (UNISA) Africa Chair in Nanoscience and Nanotechnology (2018-2020). She is a research Affiliate with the SensorLab, University of the Western Cape Sensor Laboratories, Cape Town, South Africa. Dr Nwanya is a very active researcher and has published more than 85 scientific articles in high impact journals and has a Google Scholar’s H-index of 24 and 1475 citations.


Metal and Metal Oxides for Energy and Electronics

Metal and Metal Oxides for Energy and Electronics
Author: Saravanan Rajendran
Publisher: Springer Nature
Total Pages: 413
Release: 2020-10-05
Genre: Technology & Engineering
ISBN: 3030530655

Download Metal and Metal Oxides for Energy and Electronics Book in PDF, ePub and Kindle

Energy is a key world issue in the context of climate change and increasing population, 'calling for alternative fuels, better energy storage, and energy-saving devices. This books reviews the principles and applications of metals and metal oxides for energy, with focus on batteries, electrodes, nanomaterials, electronics, supercapacitors, biofuels and sensors.


Simulation of Battery Systems

Simulation of Battery Systems
Author: Farschad Torabi
Publisher: Academic Press
Total Pages: 430
Release: 2019-11-06
Genre: Science
ISBN: 0128165952

Download Simulation of Battery Systems Book in PDF, ePub and Kindle

Simulation of Battery Systems: Fundamentals and Applications covers both the fundamental and technical aspects of battery systems. It is a solid reference on the simulation of battery dynamics based on fundamental governing equations of porous electrodes. Sections cover the fundamentals of electrochemistry and how to obtain electrochemical governing equations for porous electrodes, the governing equations and physical characteristics of lead-acid batteries, the physical characteristics of zinc-silver oxide batteries, experimental tests and parameters necessary for simulation and validation of battery dynamics, and an environmental impact and techno-economic assessment of battery systems for different applications, such as electric vehicles and battery energy storage. The book contains introductory information, with most chapters requiring a solid background in engineering or applied science. Battery industrial companies who want to improve their industrial batteries will also find this book useful. Includes carefully selected in-text problems, case studies and illustrative examples Features representative chapter-end problems, along with practical systems and applications Covers various numerical methods, including those based on CFD and optimization, also including free codes and databases


Encyclopedia of Electrochemical Power Sources

Encyclopedia of Electrochemical Power Sources
Author: Jürgen Garche
Publisher: Newnes
Total Pages: 4532
Release: 2013-05-20
Genre: Science
ISBN: 0444527451

Download Encyclopedia of Electrochemical Power Sources Book in PDF, ePub and Kindle

The Encyclopedia of Electrochemical Power Sources is a truly interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With a focus on the environmental and economic impact of electrochemical power sources, this five-volume work consolidates coverage of the field and serves as an entry point to the literature for professionals and students alike. Covers the main types of power sources, including their operating principles, systems, materials, and applications Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers Incorporates nearly 350 articles, with timely coverage of such topics as environmental and sustainability considerations


Zinc Batteries

Zinc Batteries
Author: Rajender Boddula
Publisher: John Wiley & Sons
Total Pages: 272
Release: 2020-05-05
Genre: Technology & Engineering
ISBN: 1119661897

Download Zinc Batteries Book in PDF, ePub and Kindle

Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Zinc batteries are an advantageous choice over lithium-based batteries, which have dominated the market for years in multiple areas, most specifically in electric vehicles and other battery-powered devices. Zinc is the fourth most abundant metal in the world, which is influential in its lower cost, making it a very attractive material for use in batteries. Zinc-based batteries have been around since the 1930s, but only now are they taking center stage in the energy, automotive, and other industries. Zinc Batteries: Basics, Developments, and Applicationsis intended as a discussion of the different zinc batteries for energy storage applications. It also provides an in-depth description of various energy storage materials for Zinc (Zn) batteries. This book is an invaluable reference guide for electro­chemists, chemical engineers, students, faculty, and R&D professionals in energy storage science, material science, and renewable energy.