Development Of A Neutron Diffraction System And Neutron Imaging System For Beamport Characterization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development Of A Neutron Diffraction System And Neutron Imaging System For Beamport Characterization PDF full book. Access full book title Development Of A Neutron Diffraction System And Neutron Imaging System For Beamport Characterization.

Development of a Neutron Diffraction System and Neutron Imaging System for Beamport Characterization

Development of a Neutron Diffraction System and Neutron Imaging System for Beamport Characterization
Author: Troy Casey Unruh
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Development of a Neutron Diffraction System and Neutron Imaging System for Beamport Characterization Book in PDF, ePub and Kindle

Semiconductor neutron detector design, fabrication and testing are all performed at Kansas State University (KSU). The most prevalent neutron detectors built by the KSU Semiconductor Materials And Radiological Technologies Laboratory (SMART Lab) are comprised of silicon diodes with [superscript]6LiF as a neutron converter material. Neutron response testing and calibration of the detectors is performed in a neutron detector test facility. The facility utilizes diffraction with a pyrolytic graphite (PG) monochromator to produce a diffracted neutron beam at the northwest beamport of the KSU Training Research Isotope production General Atomics (TRIGA) Mark-II nuclear reactor. A 2-D neutron beam monitor can also be used in conjunction with the test facility for active calibrations. Described in the following work are the design, construction and operation of a neutron detector test facility and a 2-D neutron detection array. The diffracted neutron beam at the detector test facility has been characterized to yield a neutron beam with an average Gaussian energy of 0.0253 eV. The diffracted beam yields a flux of 1.2x10[superscript]4 neutrons/cm[superscript]2/s at 100 kW of reactor power. The PG monochromator is diffracting on the (002) plane that has been positioned at a Bragg angle of 15.5 degrees. The 2-D neutron detection array has been characterized for uniform pixel response and uniform neutron detection efficiency. The 2-D 5x5 array of neutron detectors with a neutron detection efficiency of approximately 0.5 percent has been used as a beam monitor when performing detector testing. The amplifier circuits for the 5x5 array were designed at the KSU Electronics Design Lab (EDL) and were coupled to a LabVIEW field-programmable gate array that is read out by a custom LabVIEW virtual instrument. The virtual instrument has been calibrated to produce a pixel response that varies by less than two percent from pixel to pixel. The array has been used for imaging and active monitoring of the diffracted neutron beam at the detector test facility. The following work is part of on-going research to develop various types of solid state semiconductor neutron detectors.


Energy Selective Neutron Imaging for the Characterization of Polycrystalline Materials

Energy Selective Neutron Imaging for the Characterization of Polycrystalline Materials
Author: Robin Woracek
Publisher:
Total Pages: 275
Release: 2015
Genre: Imaging systems
ISBN:

Download Energy Selective Neutron Imaging for the Characterization of Polycrystalline Materials Book in PDF, ePub and Kindle

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the world. Promising applications for the Bragg edge technique are implemented at the neutron imaging facility CONRAD at the reactor source BER-II as well as at neutron time of flight instruments. Strain mapping is successfully demonstrated for all cases to yield quantifiable results, but is limited in practicality due to limitations in choice of the scattering vector (direction of probed strain tensor component) and the gauge volume selection . The use of Bragg edge imaging for crystalline phase mapping was explored and appears to be a very promising technique. The extension to three-dimensionally resolved tomography is presented for samples exhibiting the TRansfomation Induced Plasticity (TRIP) effect , while challenges with characterizing textured samples are discussed. Individual crystallites within a polycrystalline material exhibit elastic anisotropy which is significant as that can lead to stress concentrations and inhomogeneities during plastic deformation. Characterization of elastic anisotropy is important to understand the effects of texture on the macroscopic mechanical properties. Diffraction methods can do this, by probing the response of individual lattice planes to externally applied mechanical stress. Past experimental data using diffraction based methods have largely been limited to uni-axial tensile and/or compressive loading conditions, even though shear dominates most common failure mechanisms for structural materials. Within this dissertation, experimental techniques have been established for the measurement of lattice strains under applied torsion (pure shear) and lattice specific shear moduli are reported. This is accomplished using a (traditional) neutron diffractometer instrument, in conjunction with special alignment procedures and the specifically designed axial-torsional loading system.


Introduction to the Characterization of Residual Stress by Neutron Diffraction

Introduction to the Characterization of Residual Stress by Neutron Diffraction
Author: M.T. Hutchings
Publisher: CRC Press
Total Pages: 420
Release: 2005-02-28
Genre: Science
ISBN: 1134389809

Download Introduction to the Characterization of Residual Stress by Neutron Diffraction Book in PDF, ePub and Kindle

Over the past 25 years the field of neutron diffraction for residual stress characterization has grown tremendously, and has matured from the stage of trial demonstrations to provide a practical tool with widespread applications in materials science and engineering. While the literature on the subject has grown commensurately, it has also remained


Applications of Neutron Powder Diffraction

Applications of Neutron Powder Diffraction
Author: Erich H. Kisi
Publisher: OUP Oxford
Total Pages: 504
Release: 2008-10-02
Genre: Science
ISBN: 0191545406

Download Applications of Neutron Powder Diffraction Book in PDF, ePub and Kindle

This is the first book covering the theory, practicalities, and the extensive applications of neutron powder diffraction in materials science, physics, chemistry, mineralogy and engineering. Various highlight applications of neutron powder diffraction are outlined in the introduction, then the theory is developed and instrumentation described sufficient for a return to the applications. The book covers the use of neutron powder diffraction in the solution (hard) and refinement (more straightforward) of crystal and magnetic structures, applications of powder diffraction in quantitative phase analysis, extraction of microstructural information from powder diffraction patterns, and the applications of neutron diffraction in studies of elastic properties and for the measurement of residual stress. Additional theory to underpin these various applications is developed as required. Much of the material should be accessible to senior undergraduates in science and engineering, as well as to graduate students and more senior researchers with an interest in the technique.


Neutron Beam Design, Development, and Performance for Neutron Capture Therapy

Neutron Beam Design, Development, and Performance for Neutron Capture Therapy
Author: Otto K. Harling
Publisher: Springer Science & Business Media
Total Pages: 340
Release: 2013-03-08
Genre: Medical
ISBN: 1468458027

Download Neutron Beam Design, Development, and Performance for Neutron Capture Therapy Book in PDF, ePub and Kindle

For this Workshop, the organizers have attempted to invite experts from all known centers which are engaged in neutron beam development for neutron capture therapy. The Workshop was designed around a series of nineteen invited papers which dealt with neutron source design and development and beam characterization and performance. Emphasis was placed on epithermal beams because they offer clinical advantages and are more challenging to implement than thermal beams. Fission reactor sources were the basis for the majority of the papers; however three papers dealt with accelerator neutron sources. An additional three invited papers provided a summary of clinical results of Ncr therapy in Japan between 1968 and 1989 and overviews of clinical considerations for neutron capture therapy and of the status of tumor targeting chemical agents for Ncr. Five contributed poster papers dealing with NCT beam design and performance were also presented. A rapporteurs' paper was prepared after the Workshop to attempt to summarize the major aspects, issues, and conclusions which resulted from this Workshop. Many people contributed to both the smooth functioning of the Workshop and to the preparation of these proceedings. Special thanks are reserved for Ms. Dorothy K.