Development And Application Of Palladium Catalyzed Carbon Nitrogen Bond Forming Reactions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development And Application Of Palladium Catalyzed Carbon Nitrogen Bond Forming Reactions PDF full book. Access full book title Development And Application Of Palladium Catalyzed Carbon Nitrogen Bond Forming Reactions.

Developments and Applications of Methods for Palladium- and Copper-catalyzed Carbon-nitrogen Bond Formation

Developments and Applications of Methods for Palladium- and Copper-catalyzed Carbon-nitrogen Bond Formation
Author: Jeffrey Chih-Yeh Yang
Publisher:
Total Pages: 467
Release: 2018
Genre:
ISBN:

Download Developments and Applications of Methods for Palladium- and Copper-catalyzed Carbon-nitrogen Bond Formation Book in PDF, ePub and Kindle

The studies presented in this dissertation are aimed at the development and application of methodologies that enable carbon-nitrogen (C-N) bond formation catalyzed by late transition metals such as palladium and copper. The first part of this thesis focuses on the use of palladium catalysis for the construction of a carbon(sp2)-nitrogen bond in the context of a biphasic continuous-flow system (Chapter 1). The second part of this thesis describes the recent developments of copper-hydride (CuH) catalyzed asymmetric hydroamination for the formation of a-chiral carbon(sp3)-nitrogen bonds from olefins. This work includes the application of CuH catalysis to the synthesis of chiral N-alkyl aziridines (Chapter 2), and the discovery and development of novel electrophilic amines to enable CuH-catalyzed asymmetric hydroamination to directly access primary amines (Chapter 3). Part I. Chapter 1. Use of a "Catalytic" Cosolvent, N,N-Dimethyl Octanamide, Allows the Flow Synthesis of Imatinib with no Solvent Switch A general, efficient method for C-N cross-coupling has been developed using N,N-dimethyloctanamide as a cosolvent for biphasic continuous-flow applications. In addition to utilizing a proper co-solvent, the described method harnesses the superior mixing abilities of a stainless-steel powder packed tube reactor to efficiently couple a wide range of aryl/heteroaryl halides and aryl/heteroaryl/alkyl amines in a short period of time (


Amination and Formation of sp2 C-N Bonds

Amination and Formation of sp2 C-N Bonds
Author: Marc Taillefer
Publisher: Springer
Total Pages: 233
Release: 2013-12-12
Genre: Science
ISBN: 3642405460

Download Amination and Formation of sp2 C-N Bonds Book in PDF, ePub and Kindle

Palladium-Catalyzed sp2C–N Bond Forming Reactions: Recent Developments and Applications. Metal-catalyzed C(sp2)-N bond formation.- Recent Developments in Recyclable Copper Catalyst Systems for C−N Bond Forming Cross-Coupling Reactions Using Aryl Halides and Arylboronic Acids. Assembly of N-containing heterocycles via Pd and Cu-catalyzed C-N bond formation reactions. Copper-Catalyzed C(aryl)-N Bond Formation.


Palladium Catalyzed Carbon-nitrogen Bond Formation

Palladium Catalyzed Carbon-nitrogen Bond Formation
Author: Alejandra Domínguez Huerta
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download Palladium Catalyzed Carbon-nitrogen Bond Formation Book in PDF, ePub and Kindle

"This thesis describes the design and development of reductive amination methodologies of unactivated carbon-oxygen bonds using palladium on charcoal as a heterogeneous catalyst. The underlying premise is the transformation of starting materials that can be obtained from bio-renewable resources into commodity chemicals. Specifically, 2-cyclohexen-1-one and phenol were used as lignin building-block surrogates for C-N bond formation. The first chapter places the work developed in this thesis both in a global and a scientific context. Its objective is to provide an overview of our societal needs while describing the latest scientific developments related to this thesis topic. Thus, it begins by exploring the United Nation's Sustainable Goals, followed by an overview of petroleum and lignin chemistry, and finishes with a review on amino acid N-modification. In chapter two, the development of a novel methodology for the N-arylation of [alpha]-amino acids using 2-cyclohexen-1-one is described. Palladium on carbon was chosen as the catalyst, and several reaction conditions were explored to obtain optimal yields. This methodology's attractiveness lies in the absence of an aryl halide or protecting group on the 2-cyclohexen-1-one for the N-arylation to proceed. The reaction requires substoichiometric amounts of base and oxygen as the terminal oxidant. Aliphatic amino acids were ideal substrates for the reaction, and cyclohexanone provided the N-biarylated amino acids in good yields (up to 74%). Chapter three describes efforts to improve the harsh conditions required for the N-arylation of [alpha]-amino acids, resulting in the development of a novel methodology for their N-cyclohexylation in water, at room temperature, using phenol as a coupling partner. The reaction successfully achieves N-cyclohexylation for 17 out of the 20 naturally occurring amino acids without racemization with up to quantitative yields. Furthermore, small peptides were also successful substrates for the reaction. The fourth chapter explores the possibility of applying the latter methodology for the formation of one- and two-component peptide staples using tyrosine as a handle. The one component staple was investigated using acetyl-lysine and acetyl-tyrosine, while the two-component staple was investigated using acetylated-tyrosine 2,2'-(ethylenedioxy)bis(ethylamine). While model substrates proved to couple successfully under previously optimized conditions, concentration and characterization proved to be challenging for working with larger peptides. Additional experiments exploring the possibility of using tyrosine amination as a pH responding hydrogel are also described in this chapter. Finally, chapter five explores the possibility of synthesizing diphenylamines from phenol and ammonia formate as a convenient ammonia surrogate. Seventeen different diarylamines were synthesized with palladium on charcoal as the catalyst, with yields ranging from good to excellent. Notably, water and CO2 were the only byproducts generated from this transformation. Triphenylamine was also obtained in combination with the methodology described in Chapter 1"--


Advances in Palladium-catalyzed Carbon-nitrogen Bond Forming Processes

Advances in Palladium-catalyzed Carbon-nitrogen Bond Forming Processes
Author: Rachel Elizabeth Tundel
Publisher:
Total Pages: 136
Release: 2006
Genre:
ISBN:

Download Advances in Palladium-catalyzed Carbon-nitrogen Bond Forming Processes Book in PDF, ePub and Kindle

Chapter 1. Microwave-assisted, palladium-catalyzed C-N bond-forming reactions with aryl/heteroaryl nonaflates/halides and amines using the soluble amine bases DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) and a catalyst system consisting of Pd2dba3 and ligands (XantPhos, 2-dicylcohexylphosphino-2',4',6'-triisopropyl-1,1 '-biphenyl (XPhos) and 2-di-tert-butylphosphino-2',4',6'-triisopropyl-1, '-biphenyl) resulted in good to excellent yields of arylamines in short reaction times. Chapter 2. Using a catalyst comprised of the bulky, electron-rich monophosphine ligand di-tert-Butyl XPhos (2-di-tert-butylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl) and Pd2dba3 with sodium tert-butoxide as the base, amino heterocycles were coupled successfully with aryl/heteroaryl halides in moderate to excellent yields.


Advances in Late-Metal Carbon-Nitrogen Bond Formation for the Synthesis of Substituted Heterocycles

Advances in Late-Metal Carbon-Nitrogen Bond Formation for the Synthesis of Substituted Heterocycles
Author: Nicolas Rotta-Loria
Publisher:
Total Pages: 0
Release: 2017
Genre:
ISBN:

Download Advances in Late-Metal Carbon-Nitrogen Bond Formation for the Synthesis of Substituted Heterocycles Book in PDF, ePub and Kindle

Late-metal catalyzed cross-couplings have emerged as efficient and selective methodologies for the formation of C-C and C-N bonds. The ability to synthesize complex heterocycles from cheap and abundant starting materials is an invaluable asset to the pharmaceutical industry, given that many pharmaceuticals contain at least one heterocyclic component. This reactivity can be achieved by tuning the steric and electronic properties of ancillary ligands to support metal catalysts in the reaction steps leading to the target substrate. The Stradiotto group has developed several state-of-the-art methodologies involving ligands for palladium catalysis, for both C-C and C-N bond-forming reactions. These methodologies can be amalgamated into a multicomponent reaction platform to synthesize more complex products from simple materials. Chapter 1 outlines this concept with the application of a Mor-DalPhos/Pd catalyst in the one-pot synthesis of indoles from acetone and simple amines involving C-C and C-N bond formation. The robust nature of this method can be extended to include benchtop reaction conditions in a one-step, one-pot synthesis of indoles, thus representing a useful synthetic protocol. While palladium provides a powerful tool for C-C and C-N bond formation, the general trend in catalysis has shifted away from the precious metals toward first row metals as economic alternatives. Nickel complexes have recently emerged as excellent catalysts for a number of amination reactions. The ability to utilize ammonia also represents a sought after reaction, due to the widespread availability and synthetic utility of amino-functionalized products. In this regard, Chapter 2 will focus on the development and application of both commercially available and strategically designed ligand classes for the monoarylation of ammonia with substituted heterocycles. Hydrazine represents an important synthon in synthetic chemistry. It is synthesized on multi-ton scale every year and represents an important building block in many industrial processes. Many synthetic challenges arise from using free hydrazine as reactant, which has led to lethargic growth of its application in the field of late-metal catalyzed C-N bond-formation. However, gold-catalyzed methodologies have been developed utilizing NHC ligands to allow for the hydrohydrazination of alkynes with parent hydrazine. Chapter 4 examines the development and application of a series of (PR3)AuCl complexes for use in such transformations, leading to the identification of the first effective phosphine-bound gold complex for use in the hydrohydrazination of alkynes at room temperature.


Mechanistic Studies on Palladium-catalyzed Carbon-nitrogen Bond Forming Reactions

Mechanistic Studies on Palladium-catalyzed Carbon-nitrogen Bond Forming Reactions
Author: Liane May Klingensmith
Publisher:
Total Pages: 138
Release: 2005
Genre:
ISBN:

Download Mechanistic Studies on Palladium-catalyzed Carbon-nitrogen Bond Forming Reactions Book in PDF, ePub and Kindle

Precatalyst species present in a solution of Pd2(dba)3 and Xantphos were identified as Pd(Xantphos)(dba) and Pd(Xantphos)2 by use of 31p NMR and independent syntheses. Pd(Xantphos)2 was found to form at high ligand concentrations. To determine whether the formation of this species affected reaction rates, reaction calorimetry was used to explore the rate of the palladium-catalyzed coupling of 4-t-butylbromobenzene and morpholine using the ligand Xantphos at varying palladium to ligand ratios. It was found that catalyst activity is dramatically dependent on the concentration of ligand relative to palladium, due to formation of Pd(Xantphos)2. Two plausible hypotheses for the low activity of Pd(Xantphos)2 as a precatalyst are (1) a slow rate of dissociation of a ligand from the bis-ligated species, and (2) the high degree of insolubility of Pd(Xantphos)2. Magnetization transfer experiments were used to probe the rate of dissociation of ligand for the bis-ligated species, and reaction calorimetry experiments were performed using the more soluble t-butylXantphos in comparison to Xantphos to determine whether the insolubility of' Pd(Xantphos)2 causes it to have relatively low activity. It was found that solubility is not the main cause for the low activity of Pd(Xantphos)2, and evidence was given to support the hypothesis that low activity results from the slow dissociation of a ligand from the bis-ligated species.


Cross-coupling Reactions

Cross-coupling Reactions
Author: Joffrey Vrijdag
Publisher:
Total Pages: 268
Release: 2020
Genre: Science
ISBN: 9781536176957

Download Cross-coupling Reactions Book in PDF, ePub and Kindle

"Cross-Coupling Reactions: An Overview opens with an overview of the fundamentals and applications of the young and fast developing area of transition metal catalyzed/mediated oxidative (dehydrogenative) C-H/C-H coupling reactions between two (hetero)arenes. Continuing, the authors highlight the recent advances regarding the ligand supported transition metal-catalyzed domino (cascade) or one-pot syntheses of various heterocycles involving cross-coupling reactions. The recent advances in Cu catalyzed tandem reactions for heterocycle synthesis are also addressed. Cu metal chemistry has garnered attention as a potential alternative to precious transition metals, being cheaper, more sustainable and more easily available. A comprehensive account of research on green chemical routes is provided, involving various palladium metal-based catalysts utilized in facilitating cross-coupling reaction in aqueous media. Reported decarboxylative cross-coupling reactions are discussed along with suitable examples, focusing on their mechanism of action"--


Development of C-C and C-N Bond Forming Reactions Utilizing Palladium Carbene Intermediates and Reaction Predictor

Development of C-C and C-N Bond Forming Reactions Utilizing Palladium Carbene Intermediates and Reaction Predictor
Author: Eugene Gutman
Publisher:
Total Pages: 242
Release: 2017
Genre:
ISBN: 9780355307153

Download Development of C-C and C-N Bond Forming Reactions Utilizing Palladium Carbene Intermediates and Reaction Predictor Book in PDF, ePub and Kindle

The research described herein consists of two disparate areas of study. The first and largest portion describes the development of novel palladium-catalyzed C-C and C-N bond forming reactions. The second portion describes the development of the Reaction Predictor system and its application towards identification of reaction products and pathways.Palladium-carbenes are important intermediates in many modern C-C and C-heteroatom bond forming reactions. Palladium-catalyzed carbenylative coupling reactions are analogous to carbonylative processes with carbon monoxide. Insertion of a cis X type ligand into the palladium-carbene can potentially generate a new stereogenic center, making these reactions worthy of study. Carbenylative insertions have been used to generate electrophilic eta3-allylpalladium species which were trapped with nitrogen and carbon nucleophiles. This work describes the cyclization of eta3-benzylpalladium species derived from palladium-catalyzed carbenylative insertion. This optimization and broad substrate scope of this reaction led to the synthesis of 1-arylindanes and 1-aryltetralins in high yields. Additionally, this reaction was used to prepare tetralone 2.30bl, a synthetic intermediate in the Curran synthesis of (+/-)-podophyllotoxin. The carbenylative cyclization also led us to pursue utilizing aliphatic N-tosylhydrazones as palladium-carbene precursors in other coupling reactions. It was realized that aliphatic N-tosylhydrazones with adjacent hydrogens can effectively participate in three-component palladium-catalyzed carbenylative cross-coupling reactions of vinyl iodides while avoiding beta-hydride elimination.Development of a palladium-catalyzed enantioselective carbene insertion into the N-H bond of aromatic heterocycles to obtain alpha-(N-indolyl)-alpha-arylesters and alpha-(N-carbazolyl)-alpha-arylesters, using alpha-diazo-alpha-arylacetates as palladium carbene precursors is also described. Aliphatic amines were also competent coupling partners in the reaction, affording biologically active piperdine derivatives in moderate yields. The reaction was applied towards the synthesis of a bioactive carbazole derivative in a concise manner.In a separate project an inductive machine learning reaction prediction program called Reaction Predicator has been trained and applied towards identification of plausible reaction products in ESI spectra. The reaction predictor training set has been expanded by the addition of new reactions written in our lab. Over 800 transition metal based training reactions have been written.In addition, over 10,000 new complex training reactions have been written and added to the training set. The Reaction Predictor pathway search feature has been customized to match products to unknown m/z peaks in ESI spectra. Pathway search was applied towards unknown identification in palladium-catalyzed N-H insertion reactions.