Developing Best Practices For Rehabilitation Of Concrete With Hot Mix Asphalt Hma Overlays Related To Density And Reflective Cracking PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Developing Best Practices For Rehabilitation Of Concrete With Hot Mix Asphalt Hma Overlays Related To Density And Reflective Cracking PDF full book. Access full book title Developing Best Practices For Rehabilitation Of Concrete With Hot Mix Asphalt Hma Overlays Related To Density And Reflective Cracking.

Developing Best Practices for Rehabilitation of Concrete with Hot Mix Asphalt (HMA) Overlays Related to Density and Reflective Cracking

Developing Best Practices for Rehabilitation of Concrete with Hot Mix Asphalt (HMA) Overlays Related to Density and Reflective Cracking
Author: Eshan V. Dave
Publisher:
Total Pages: 236
Release: 2021
Genre: Pavements
ISBN:

Download Developing Best Practices for Rehabilitation of Concrete with Hot Mix Asphalt (HMA) Overlays Related to Density and Reflective Cracking Book in PDF, ePub and Kindle

Asphalt overlays are commonly used to rehabilitate deteriorated Portland cement concrete (PCC) pavements. However, mechanically or thermally driven movements at joints and cracks in the underlying pavement usually lead to development of reflective cracks in the overlay. The formation and propagation of reflection cracking is controlled by the mechanical properties of the asphalt and the condition of the overlaid pavement. Current state of practice for asphalt overlay design is policy oriented and lacking an engineered design approach. There is need for establishing state of practice in design of overlays as well as for assessment of PCC pavement condition and recommending improvements to existing pavement prior to overlay construction. The objective of this study is to develop a simple decision tree-based tool for selecting suitable asphalt mixtures and overlay designs to prolong overlay lives by lowering reflective cracking and improving in-situ density. This research will leverage the current National Road Research Alliance (NRRA) effort of constructing, instrumenting, and monitoring 12 MnROAD test sections, laboratory performance tests on asphalt mixtures from the test sections, and past field performance data. The proposed tool incorporates field performance data, performance modelling, and life-cycle cost analysisto develop best practices for rehabilitation of PCC with asphalt overlays.


Modeling Reflective Cracking Development in Hot-mix Asphalt Overlays and Quantification of Control Techniques

Modeling Reflective Cracking Development in Hot-mix Asphalt Overlays and Quantification of Control Techniques
Author: Jongeun Baek
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Modeling Reflective Cracking Development in Hot-mix Asphalt Overlays and Quantification of Control Techniques Book in PDF, ePub and Kindle

Hot-mix asphalt (HMA) overlay is regarded as an efficient method to rehabilitate moderately deteriorated pavements. Despite the application of an adequately designed overlay, when HMA overlays are built on jointed concrete pavement (JCP) or a cracked surface, reflective cracking can develop shortly after the overlay application due to traffic loads and environmental changes. Several remedial techniques, including interlayer systems, have been incorporated into HMA overlays to control reflective cracking. This study examined the behavior of traffic-induced reflective cracking using a finite element (FE) model for an HMA overlay with and without interlayer systems, and evaluated the performance of interlayer systems in controlling reflective cracking. To achieve these objectives, a three-dimensional FE model was built for a typical HMA overlay constructed over JCP. A linear viscoelastic model and a bilinear cohesive zone model (CZM) were incorporated into the FE model to characterize continuum and fracture behavior of the HMA. Using the bilinear CZM, reflective cracking initiation and propagation were simulated. Transient moving vehicular loading was applied across a joint to develop reflective cracking. In order to force reflective cracking development by one pass of load application, various levels of overload were applied. Two distinct interlayer systems, sand mix and steel netting with slurry seal, were examined for their effectiveness in controlling reflective cracking. The sand mix was modeled with the LVE model and bilinear CZM. The steel netting interlayer system was modeled with beam elements for steel wires and membrane elements for slurry seal. To quantify the status of reflective cracking development, a representative fractured area (RFAOL), that is an equivalent stiffness degradation in the entire HMA overlay, was used. A limit state load approach was used to determine the resistance of the HMA overlay to reflective cracking in terms of normalized axle load of an overload equivalent to a 80-kN single-axle load. The service life of the HMA overlay regarding reflective cracking was specified by the number of load repetitions based on the Paris law. A reflective cracking control factor was defined as the ratio of the service life to the HMA overlay without an interlayer system; the factor was used to evaluate the performance effectiveness of these interlayer systems in controlling reflective cracking. It was found that the bearing capacity of existing JCP played an important role in developing reflective cracking. Reflective cracking potential increased inversely with the modulus of base and subgrade layers. Interface bonding conditions, especially bonding strength, affected the development of reflective cracking. Lower interface bonding strength resulted in greater potential for developing reflective cracking. The study concluded that the sand mix interlayer system extended the service life of the HMA overlay regarding reflective cracking due to its relatively high fracture energy. A macro-crack level of reflective cracking was initiated in the wearing course in the HMA, so-called crack jumping. The softer the sand mix, the tougher it may be, but it may cause shear rutting in HMA overlay. Hence, sand mix fracture energy and thickness thresholds should be identified. The steel netting interlayer system performed better than the sand mix; the performance of the latter is thickness and fracture energy dependent. When the steel netting interlayer system was installed properly, the reflective cracking service life of the HMA overlay was found to be six times longer than that of the HMA. The performance was still better than sand mix when localized deboning induced. However, severe debonding of steel netting can be detrimental to its performance.


A Rational Approach to the Prediction of Reflective Cracking in Bituminous Overlays for Concrete Pavements

A Rational Approach to the Prediction of Reflective Cracking in Bituminous Overlays for Concrete Pavements
Author: Thomas Bennert
Publisher:
Total Pages: 203
Release: 2009
Genre: Pavements, Asphalt concrete
ISBN:

Download A Rational Approach to the Prediction of Reflective Cracking in Bituminous Overlays for Concrete Pavements Book in PDF, ePub and Kindle

Hot mix asphalt (HMA) is used as the primary overlying material of concrete pavements during rehabilitation because of its inexpensive nature when compared to most Portland cement concrete (PCC) rehabilitation/reconstruction alternatives. However, due to the majority of the PCC pavements being in average to poor condition, many HMA overlays are exposed to extreme movements (both vertical and horizontal). The combination of associated load and environmentally induced movements creates complex stresses and strains in the vicinity of expansion joints and cracks in the PCC, thus dramatically reducing the life of the HMA overlay, typically in the form of reflective cracking. Reflective cracking is a fatigue cracking distress, which is initiated at the bottom of the HMA overlay and propagates to the surface. When the crack reaches the HMA overlay surface, not only does it affect the ride quality and overall integrity of the pavement surface, but it also creates a path for which water can migrate down into and below the PCC layer. This can ultimately reduce the overall structural support of the composite (HMA and PCC) pavement and result in a complete pavement failure. Medium to high severity reflective cracking results in poor surface conditions that could lead to poor driving conditions and higher accident rates. Therefore, this research is timely in that it not only addresses the structural integrity of the pavement system, but also the safety of the driving public, which is one of the main objectives of the administration at state agencies. To better understand the mechanisms associated with the development of reflective cracking, an extensive literature review was conducted. Analysis of the literature review indicated significant gaps in the current state of the practice in using bituminous overlays on PCC pavements. To fill in these gaps, a survey was developed, distributed to the state transportation agencies of all fifty states, and compiled to better define the scope of the research. The survey clearly identified that a major gap in the current state of the practice is linking the field conditions (climate, deflections, traffic levels) to appropriate laboratory testing protocols. Therefore, field test sections were selected with appropriate field forensic testing and traffic collection. During construction of the bituminous overlays, loose mix was collected and brought back to the laboratory for material characterization testing that would simulate the loading conditions associated with the respective test section. The research conducted during the development of this thesis has led to a rational approach in the prediction of reflective cracking potential in HMA overlays placed on PCC pavements. This methodology utilizes field forensic information that would normally be collected during the evaluation of the PCC/composite pavement prior to rehabilitation and laboratory fatigue and stiffness characterization of the HMA mixture(s), to predict the potential for reflective cracking in the bituminous overlay mixture(s). The extensive laboratory testing and field calibration/verification information utilized in the research has also led to "decision tree" methodology that would allow state agencies to properly select asphalt mixtures for overlaying PCC pavements.


Guidelines and Methodologies for the Rehabilitation of Rigid Highway Pavements Using Asphalt Concrete Overlays

Guidelines and Methodologies for the Rehabilitation of Rigid Highway Pavements Using Asphalt Concrete Overlays
Author:
Publisher:
Total Pages: 0
Release: 1991
Genre: Pavements, Asphalt concrete
ISBN:

Download Guidelines and Methodologies for the Rehabilitation of Rigid Highway Pavements Using Asphalt Concrete Overlays Book in PDF, ePub and Kindle

The overall objective of this study was to develop guidelines for the practical and cost-effective use of hot mix asphalt (HMA) overlays to rehabilitate deteriorating portland cement concrete (PCC) highway pavements. The particular procedures covered by the study were: (1) crack and seat; (2) break and seat; (3) rubblize; and (4) saw and sealing. This executive summary presents the major findings of this extensive nationwide research study.


Prediction of Reflection Cracking in Hot Mix Asphalt Overlays

Prediction of Reflection Cracking in Hot Mix Asphalt Overlays
Author: Fang-Ling Tsai
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Prediction of Reflection Cracking in Hot Mix Asphalt Overlays Book in PDF, ePub and Kindle

Reflection cracking is one of the main distresses in hot-mix asphalt (HMA) overlays. It has been a serious concern since early in the 20th century. Since then, several models have been developed to predict the extent and severity of reflection cracking in HMA overlays. However, only limited research has been performed to evaluate and calibrate these models. In this dissertation, mechanistic-based models are calibrated to field data of over 400 overlay test sections to produce a design process for predicting reflection cracks. Three cracking mechanisms: bending, shearing traffic stresses, and thermal stress are taken into account to evaluate the rate of growth of the three increasing levels of distress severity: low, medium, and high. The cumulative damage done by all three cracking mechanisms is used to predict the number of days for the reflection crack to reach the surface of the overlay. The result of this calculation is calibrated to the observed field data (severity and extent) which has been fitted with an S-shaped curve. In the mechanistic computations, material properties and fracture-related stress intensity factors are generated using efficient Artificial Neural Network (ANN) algorithms. In the bending and shearing traffic stress models, the traffic was represented by axle load spectra. In the thermal stress model, a recently developed temperature model was used to predict the temperature at the crack tips. This process was developed to analyze various overlay structures. HMA overlays over either asphalt pavement or jointed concrete pavement in all four major climatic zones are discussed in this dissertation. The results of this calculated mechanistic approach showed its ability to efficiently reproduce field observations of the growth, extent, and severity of reflection cracking. The most important contribution to crack growth was found to be thermal stress. The computer running time for a twenty-year prediction of a typical overlay was between one and four minutes.


Reflective Crack Mitigation Guide for Flexible Pavements

Reflective Crack Mitigation Guide for Flexible Pavements
Author: R. Christopher Williams
Publisher:
Total Pages: 142
Release: 2015
Genre: Pavements, Asphalt
ISBN:

Download Reflective Crack Mitigation Guide for Flexible Pavements Book in PDF, ePub and Kindle

Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.


Rehabilitation of Concrete Pavements Utilizing Rubblization and Crack and Seat Methods

Rehabilitation of Concrete Pavements Utilizing Rubblization and Crack and Seat Methods
Author:
Publisher:
Total Pages: 139
Release: 2005
Genre: Pavements, Concrete
ISBN:

Download Rehabilitation of Concrete Pavements Utilizing Rubblization and Crack and Seat Methods Book in PDF, ePub and Kindle

Deterioration in Portland Cement Concrete (PCC) pavements can occur due to distresses caused by a combination of traffic loads and weather conditions. Hot mix asphalt (HMA) overlay is the most commonly used rehabilitation technique for such deteriorated PCC pavements. However, the performance of these HMA overlaid pavements is hindered due to the occurrence of reflective cracking, resulting in significant reduction of pavement serviceability. Various fractured slab techniques, including rubblization, crack and seat, and break and seat are used to minimize reflective cracking by reducing the slab action. The main objective of this project is to develop a mechanistic-empirical (ME) design aproach for the HMA overlay thickness design for fractured PCC pavements. In this design procedure, failure criteria such as the tensile strain at the bottom of HMA layer and the vertical compressive strain on the surface of subgrade are used to consider HMA fatigue and subgrade rutting, respectively. The developed ME design system is also implemented in a Visual Basic computer program.


AASHTO Guide for Design of Pavement Structures, 1993

AASHTO Guide for Design of Pavement Structures, 1993
Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
Total Pages: 622
Release: 1993
Genre: Pavements
ISBN: 1560510552

Download AASHTO Guide for Design of Pavement Structures, 1993 Book in PDF, ePub and Kindle

Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.


Assessment of Asphalt Interlayer Designed on Jointed Concrete

Assessment of Asphalt Interlayer Designed on Jointed Concrete
Author: R. Christopher Williams
Publisher:
Total Pages: 37
Release: 2014
Genre: Pavements, Asphalt concrete
ISBN:

Download Assessment of Asphalt Interlayer Designed on Jointed Concrete Book in PDF, ePub and Kindle

Reflective cracking in hot mix asphalt (HMA) overlays has been a common cause of poor pavement performance in Iowa for many years. Reflective cracks commonly occur in HMA overlays when deteriorated portland cement concrete is paved over with HMA. This results in HMA pavement surfaces with poor ride quality and increased transportation maintenance costs. To delay the formation of cracks in HMA overlays, the Iowa Department of Transportation (Iowa DOT) has begun to implement a crack-relief interlayer mix design specification. The crack-relief interlayer is an asphalt-rich, highly flexible HMA that can resist cracking in high strain loading conditions. In this project, the field performance of an HMA overlay using a one inch interlayer was compared to a conventional HMA overlay without an interlayer. Both test sections were constructed on US 169 in Adel, Iowa as part of an Iowa DOT overlay project. The laboratory performance of the interlayer mix design was assessed for resistance to cracking from repeated strains by using the four-point bending beam apparatus. An HMA using a highly polymer modified binder was designed and shown to meet the laboratory performance test criteria. The field performance of the overlay with the interlayer exceeded the performance of the conventional overlay that did not have the interlayer. After one winter season, 29 percent less reflective cracking was measured in the pavement section with the interlayer than the pavement section without the interlayer. The level of cracking severity was also reduced by using the interlayer in the overlay.