Determination Of Top Quark Charge In Cdf Experiment PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Determination Of Top Quark Charge In Cdf Experiment PDF full book. Access full book title Determination Of Top Quark Charge In Cdf Experiment.

Determination of Top Quark Charge in CDF Experiment

Determination of Top Quark Charge in CDF Experiment
Author:
Publisher:
Total Pages: 107
Release: 2007
Genre:
ISBN:

Download Determination of Top Quark Charge in CDF Experiment Book in PDF, ePub and Kindle

This thesis deals with the problematic of top quark charge measurement in CDF experiment at Fermilab. The goal is to determine if the top quark observed on Tevatron experiments is the Standard Model particle with the predicted charge 2/3 or it is some exotic 4th generation quark with the charge of -4/3 as suggested by some alternative theories.


Study of the Top Quark Electric Charge at the CDF Experiment

Study of the Top Quark Electric Charge at the CDF Experiment
Author:
Publisher:
Total Pages: 146
Release: 2011
Genre:
ISBN:

Download Study of the Top Quark Electric Charge at the CDF Experiment Book in PDF, ePub and Kindle

We report on the measurement of the top quark electric charge using the jet charge tagging method on events containing a single lepton collected by the CDF II detector at Fermilab between February 2002 and February 2010 at the center-of-mass energy √s = 1.96 TeV. There are three main components to this measurement: determining the charge of the W (using the charge of the lepton), pairing the W with the b-jet to ensure that they are from the same top decay branch and finally determining the charge of the b-jet using the Jet Charge algorithm. We found, on a sample of 5.6 fb−1 of data, that the p-value under the standard model hypothesis is equal to 13.4%, while the p-value under the exotic model hypothesis is equal to 0.014%. Using the a priori criteria generally accepted by the CDF collaboration, we can say that the result is consistent with the standard model, while we exclude an exotic quark hypothesis with 95% confidence. Using the Bayesian approach, we obtain for the Bayes factor (2ln(BF)) a value of 19.6, that favors very strongly the SM hypothesis over the XM one. The presented method has the highest sensitivity to the top quark electric charge among the presented so far top quark charge analysis.


Measurements and Searches with Top Quarks

Measurements and Searches with Top Quarks
Author:
Publisher:
Total Pages: 254
Release: 2008
Genre:
ISBN:

Download Measurements and Searches with Top Quarks Book in PDF, ePub and Kindle

In 1995 the last missing member of the known families of quarks, the top quark, was discovered by the CDF and D0 experiments at the Tevatron, a proton-antiproton collider at Fermilab near Chicago. Until today, the Tevatron is the only place where top quarks can be produced. The determination of top quark production and properties is crucial to understand the Standard Model of particle physics and beyond. The most striking property of the top quark is its mass--of the order of the mass of a gold atom and close to the electroweak scale--making the top quark not only interesting in itself but also as a window to new physics. Due to the high mass, much higher than of any other known fermion, it is expected that the top quark plays an important role in electroweak symmetry breaking, which is the most prominent candidate to explain the mass of particles. In the Standard Model, electroweak symmetry breaking is induced by one Higgs field, producing one additional physical particle, the Higgs boson. Although various searches have been performed, for example at the Large Electron Positron Collider (LEP), no evidence for the Higgs boson could yet be found in any experiment. At the Tevatron, multiple searches for the last missing particle of the Standard Model are ongoing with ever higher statistics and improved analysis techniques. The exclusion or verification of the Higgs boson can only be achieved by combining many techniques and many final states and production mechanisms. As part of this thesis, the search for Higgs bosons produced in association with a top quark pair (t{bar t}H) has been performed. This channel is especially interesting for the understanding of the coupling between Higgs and the top quark. Even though the Standard Model Higgs boson is an attractive candidate, there is no reason to believe that the electroweak symmetry breaking is induced by only one Higgs field. In many models more than one Higgs boson are expected to exist, opening even more channels to search for charged or neutral Higgs bosons. Depending on its mass, the charged Higgs boson is expected to decay either into top quarks or be the decay product of a top quark. For masses below the top quark mass, the top decay into a charged Higgs boson and a b quark can occur at a certain rate, additionally to the decays into W bosons and a b quark. The different decays of W and charged Higgs bosons can lead to deviations of the observed final number of events in certain final states with respect to the Standard Model expectation. A global search for charged Higgs bosons in top quark pair events is presented in this thesis, resulting in the most stringent limits to-date. Besides the decay of top quarks into charged Higgs or W bosons, new physics can also show up in the quark part of the decay. While in the Standard Model the top quark decays with a rate of about 100% into a W boson and a b quark, there are models where the top quark can decay into a W boson and a non-b quark. The ratio of branching fractions in which the top quark decays into a b quark over the branching fractions in which the top quark decays into all quarks is measured as part of this thesis, yielding the most precise measurement today. Furthermore, the Standard Model top quark pair production cross section is essential to be known precisely since the top quark pair production is the main background for t{bar t}H production and many other Higgs and beyond the Standard Model searches. However, not only the search or the test of the Standard Model itself make the precise measurement of the top quark pair production cross section interesting. As the cross section is calculated with high accuracy in perturbative QCD, a comparison of the measurement to the theory expectation yields the possibility to extract the top quark mass from the cross section measurement. Although many dedicated techniques exist to measure the top quark mass, the extraction from the cross section represents an important complementary measurement. The latter is briefly discussed in this thesis and compared to direct top mass measurements. The goal of this thesis is the improved understanding of the top quark sector and its use as a window to new physics. Techniques are extended and developed to measure the top quark pair production cross section simultaneously with the ratio of branching fractions, the t{bar t}H cross section or the rate with which top quarks decay into charged Higgs bosons. Some of the results are then taken to extract more information. The cross section measurement is used to extract the top quark mass, and the ratio of the top quark pair production cross sections in different final states, yielding a limit on non-Standard Model top quark decays.


Top Quark Physics at Hadron Colliders

Top Quark Physics at Hadron Colliders
Author: Arnulf Quadt
Publisher: Springer Science & Business Media
Total Pages: 166
Release: 2007-08-16
Genre: Science
ISBN: 3540710604

Download Top Quark Physics at Hadron Colliders Book in PDF, ePub and Kindle

This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.


Observation of Electroweak Single Top-Quark Production with the CDF II Experiment

Observation of Electroweak Single Top-Quark Production with the CDF II Experiment
Author:
Publisher:
Total Pages: 180
Release: 2009
Genre:
ISBN:

Download Observation of Electroweak Single Top-Quark Production with the CDF II Experiment Book in PDF, ePub and Kindle

The standard model of elementary particle physics (SM) predicts, besides the top-quark pair production via the strong interaction, also the electroweak production of single top-quarks [19]. Up to now, the Fermilab Tevatron proton-antiproton-collider is the only place to produce and study top quarks emerging from hadron-hadron-collisions. Top quarks were directly observed in 1995 during the Tevatron Run I at a center-of-mass energy of √s = 1.8 TeV simultaneously by the CDF and D0 Collaborations via the strong production of top-quark pairs. Run II of the Tevatron data taking period started 2001 at √s = 1.96 TeV after a five year upgrade of the Tevatron accelerator complex and of both experiments. One main component of its physics program is the determination of the properties of the top quark including its electroweak production. Even though Run II is still ongoing, the study of the top quark is already a successful endeavor, confirmed by dozens of publications from both Tevatron experiments. A comprehensive review of top-quark physics can be found in reference. The reasons for searching for single top-quark production are compelling. As the electroweak top-quark production proceeds via a Wtb vertex, it provides the unique opportunity of the direct measurement of the CKM matrix element.


Top Quark Mass and Production from CDF.

Top Quark Mass and Production from CDF.
Author:
Publisher:
Total Pages: 7
Release: 1997
Genre:
ISBN:

Download Top Quark Mass and Production from CDF. Book in PDF, ePub and Kindle

We present the latest results about the top quark obtained by the CDF experiment using a data sample of about 110 pb−1 collected at the Fermilab Tevatron collider. We briefly describe the production cross section determination and the top mass measurement. Finally we review the search for the top quark in rare decay channels and the first direct calculation of the CKM matrix element V{sub tb}.


A Measurement of the Top Quark's Charge

A Measurement of the Top Quark's Charge
Author:
Publisher:
Total Pages: 242
Release: 2007
Genre:
ISBN:

Download A Measurement of the Top Quark's Charge Book in PDF, ePub and Kindle

The top quark was discovered in 1995 at the Fermilab National Accelerator Laboratory (Fermilab). One way to confirm if the observed top quark is really the top quark posited in the Standard Model (SM) is to measure its electric charge. In the Standard Model the top quark is the isospin partner of the bottom quark and is expected to have a charge of +2/3. However, an alternative 'exotic' model has been proposed with a fourth generation exotic quark that has the same characteristics, such as mass, as our observed top but with a charge of -4/3. This thesis presents the first CDF measurement of the top quark's charge via its decay products, a W boson and a bottom quark, using (almost equal to) 1 fb−1 of data. The data were collected by the CDF detector from proton anti-proton (p{bar p}) collisions at (square root)s = 1.96 TeV at Fermilab. We classify events depending on the charges of the bottom quark and associated W boson and count the number of events which appear 'SM-like' or 'exotic-like' with a SM-like event decaying as t --> Wb and an exotic event as t --> W−b. We find the p-value under the Standard Model hypothesis to be 0:35 which is consistent with the Standard Model. We exclude the exotic quark hypothesis at an 81% confidence level, for which we have chosen a priori that the probability of incorrectly rejecting the SM would be 1%. The calculated Bayes Factor (BF) is 2 x Ln(BF)=8.54 which is interpreted as the data strongly favors the Standard Model over the exotic quark hypothesis.


Top Quark Physics at the CDF Experiment

Top Quark Physics at the CDF Experiment
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Top Quark Physics at the CDF Experiment Book in PDF, ePub and Kindle

Fermilab's Tevatron accelerator is recently performing at record luminosities that enables a program systematically addressing the physics of top quarks. The CDF collaboration has analyzed up to 5 fb−1 of proton anti-proton collisions from the Tevatron at a center of mass energy of 1.96 TeV. The large datasets available allow to push top quark measurements to higher and higher precision and have lead to the recent observation of electroweak single top quark production at the Tevatron. This article reviews recent results on top quark physics from the CDF experiment.


Measurement of Cross Section of Quark Pair Production Top with the D0 Experiment at the Tevatron and Determination the Top Quark Mass Using this Measure

Measurement of Cross Section of Quark Pair Production Top with the D0 Experiment at the Tevatron and Determination the Top Quark Mass Using this Measure
Author:
Publisher:
Total Pages: 233
Release: 2010
Genre:
ISBN:

Download Measurement of Cross Section of Quark Pair Production Top with the D0 Experiment at the Tevatron and Determination the Top Quark Mass Using this Measure Book in PDF, ePub and Kindle

The top quark has been discovered by CDF and D0 experiments in 1995 at the proton-antiproton collider Tevatron. The amount of data recorded by both experiments makes it possible to accurately study the properties of this quark: its mass is now known to better than 1% accuracy. This thesis describes the measurement of the top pair cross section in the electron muon channel with 4, 3 fb−1 recorded data between 2006 and 2009 by the D0 experiment. Since the final state included a muon, improvements of some aspects of its identification have been performed : a study of the contamination of the cosmic muons and a study of the quality of the muon tracks. The cross section measurement is in good agreement with the theoretical calculations and the other experimental measurements. This measurement has been used to extract a value for the top quark mass. This method allows for the extraction of a better defined top mass than direct measurements as it depends less on Monte Carlo simulations. The uncertainty on this extracted mass, dominated by the experimental one, is however larger than for direct measurements. In order to decrease this uncertainty, the ratio of the Z boson and the top pair production cross sections has been studied to look for some possible theoretical correlations. At the Tevatron, the two cross sections are not theoretically correlated: no decrease of the uncertainty on the extracted top mass is therefore possible.