Design Synthesis And Characterization Of Self Assembling Conjugated Polymers For Use In Organic Electronic Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design Synthesis And Characterization Of Self Assembling Conjugated Polymers For Use In Organic Electronic Applications PDF full book. Access full book title Design Synthesis And Characterization Of Self Assembling Conjugated Polymers For Use In Organic Electronic Applications.

Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications

Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications
Author: Kathy Beckner Woody
Publisher:
Total Pages:
Release: 2011
Genre: Organic electronics
ISBN:

Download Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications Book in PDF, ePub and Kindle

Conjugated polymers comprise some of the most promising materials for new technologies such as organic field effect transistors, solar light harvesting technology and sensing devices. In spite of tremendous research initiatives in materials chemistry, the potential to optimize device performance and develop new technologies is remarkable. Understanding relationships between the structure of conjugated polymers and their electronic properties is critical to improving device performance. The design and synthesis of new materials which self-organize into ordered nanostructures creates opportunities to establish relationships between electronic properties and morphology or molecular packing. This thesis details our progress in the development of synthetic routes which provide access to new classes of conjugated polymers that contain dissimilar side chains that segregate or dissimilar conjugated blocks which phase separate, and summarizes our initial attempts to characterize these materials. Poly(1,4-phenylene ethynylene)s (PPEs) have been used in a variety of organic electronic applications, most notably as fluorescent sensors. Using traditional synthetic methods, asymmetrically disubstituted PPEs have irregular placement of side chains on the conjugated backbone. Herein, we establish the first synthetic route to an asymmetrically substituted regioregular PPEs. The initial PPEs in this study have different lengths of alkoxy side chains, and both regioregular and regiorandom analogs are synthesized and characterized for comparison. The design of amphiphilic structures provides additional opportunities for side chains to influence the molecular packing and electronic properties of conjugated polymers. A new class of regioregular, amphiphilic PPEs has been prepared bearing alkoxy and semifluoroalkoxy side chains, which have a tendency to phase separate. Fully conjugated block copolymers can provide access to interesting new morphologies as a result of phase separation of the conjugated blocks. In particular, donor-acceptor block copolymers that phase separate into electron rich and electron poor domains may be advantageous in organic electronic devices such as bulk heterojunction solar cells, of which the performance relies on precise control of the interface between electron donating and accepting materials. The availability of donor-acceptor block copolymers is limited, largely due to the challenges associated with synthesizing these materials. In this thesis, two new synthetic routes to donor-acceptor block copolymers are established. These methods both utilize the catalyst transfer condensation polymerization, which proceeds by a chain growth mechanism. The first example entails the synthesis of a monofunctionalized, telechelic poly(3-alkylthiophene) which can be coupled to electron accepting polymers in a subsequent reaction. The other method describes the first example of a one-pot synthesis of a donor-acceptor diblock copolymer. The methods of synthesis are described, and characterization of the block copolymers is reported.


Conjugated Polymers for Next-Generation Applications, Volume 1

Conjugated Polymers for Next-Generation Applications, Volume 1
Author: Vijay Kumar
Publisher: Woodhead Publishing
Total Pages: 618
Release: 2022-06-24
Genre: Technology & Engineering
ISBN: 0128236345

Download Conjugated Polymers for Next-Generation Applications, Volume 1 Book in PDF, ePub and Kindle

Conjugated Polymers for Next-Generation Applications, Volume One: Synthesis, Properties and Optoelectrochemical Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book’s emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. Provides an overview of the synthesis and functionalization of conjugated polymers and their composites Reviews important photovoltaics applications of conjugated polymeric materials, including their use in energy storage, batteries and optoelectronic devices Discusses conjugated polymers and their application in electronics for sensing, bioelectronics, memory, and more


Conjugated Polymers for Organic Electronics

Conjugated Polymers for Organic Electronics
Author: Andrew Grimsdale
Publisher: Cambridge University Press
Total Pages: 277
Release: 2024-04-04
Genre: Technology & Engineering
ISBN: 1009566032

Download Conjugated Polymers for Organic Electronics Book in PDF, ePub and Kindle

Focusing on how conjugated polymers can be designed and made for use in efficient organic electronic devices, this book covers the tools for future development of more environmentally and economically friendly devices. Including examples of interdisciplinary science, it exemplifies how chemists and physicists work together to enable the design and synthesis of high-performance material in devices, allowing polymer-based electronic devices to become viable commercial products. It provides the main classes of conjugated polymers and their applications in organic electronic devices such as transistors, light-emitting diodes, and solar cells, making this a comprehensive introduction. This complete guide includes the methods for making conjugated polymers, the properties and specific structures that make them suitable for use, and how their synthesis can be optimised to improve device performance. Written by experts in the field, this is the ideal guide for researchers and practitioners across materials science, physics, chemistry, and electrical engineering.


Organic Radical Polymers

Organic Radical Polymers
Author: Sanjoy Mukherjee
Publisher: Springer
Total Pages: 85
Release: 2017-06-22
Genre: Technology & Engineering
ISBN: 3319585746

Download Organic Radical Polymers Book in PDF, ePub and Kindle

This book provides a detailed introduction to organic radical polymers and open-shell macromolecules. Functional macromolecules have led to marked increases in a wide range of technologies, and one of the fastest growing of these fields is that of organic electronic materials and devices. To date, synthetic and organic electronic device efforts have focused almost exclusively on closed-shell polymers despite the promise of open-shell macromolecules in myriad applications. This text represents the first comprehensive review of the design, synthesis, characterization, and device applications of open-shell polymers. In particular, it will summarize the impressive synthetic and device performance efforts that have been achieved with respect to energy storage, energy conversion, magnetic, and spintronic applications. By combining comprehensive reviews with a wealth of informative figures, the text provides the reader with a complete “molecules-to-modules” understanding of the state of the art in open-shell macromolecules. Moreover, the monograph highlights future directions for open-shell polymers in order to allow the reader to be part of the community that continues to build the field. In this way, the reader will gain a rapid understanding of the field and will have a clear pathway to utilize these materials in next-generation applications.


Conjugated Polymers for Next-Generation Applications, Volume 2

Conjugated Polymers for Next-Generation Applications, Volume 2
Author: Vijay Kumar
Publisher: Woodhead Publishing
Total Pages: 443
Release: 2022-06-23
Genre: Technology & Engineering
ISBN: 0128240954

Download Conjugated Polymers for Next-Generation Applications, Volume 2 Book in PDF, ePub and Kindle

Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book’s emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. Provides an overview of the synthesis and functionalization of conjugated polymers and their composites Reviews important photovoltaics applications of conjugated polymeric materials, including their use in energy storage, batteries and optoelectronic devices Discusses conjugated polymers and their application in electronics for sensing, bioelectronics, memory, and more


Conjugated Polymer Design and Engineering for Organic Electronics

Conjugated Polymer Design and Engineering for Organic Electronics
Author: Claire Hoi Kar Woo
Publisher:
Total Pages: 258
Release: 2011
Genre:
ISBN:

Download Conjugated Polymer Design and Engineering for Organic Electronics Book in PDF, ePub and Kindle

The molecular structure of a conjugated polymer critically impacts its physical and optoelectronic properties, thus determining its ultimate performance in organic electronic devices. In this work, new polymers and derivatives are designed, synthesized, characterized, and tested in photovoltaic devices. Through device engineering and nanoscale characterization, general structure-function relationships are established to aid the design of the next-generation of high performance polymer semiconductors for organic electronic applications. Using a prototypical conjugated polymer, the influence of backbone regioregularity is examined and found to highly impact polymer crystallinity, solid state morphology and device stability. The investigation of alternative aromatic units in the backbone also led to new understandings in polymer processability and the development of promising materials for organic photovoltaics. Besides the backbone structure, the side chain choice of the polymer can significantly affect material properties and device performance as well. In fact, the side chain substitution can influence both the optoelectronic properties and the physical properties of the polymer. A sterically bulky side chain can be used to tune the donor/acceptor separation distance, which in turn determines the charge separation efficiency. The addition of a polar side group increases the dielectric constant of a polymer and improves overall charge separation. Choosing the appropriate solubilizing group can also induce solid state packing of the polymer and considerably enhance device efficiency. Finally, the influence of post-fabrication processing techniques on the crystallinity and charge transport properties of a polymer is highlighted.