Design Of Trajectory Optimization Approach For Space Maneuver Vehicle Skip Entry Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design Of Trajectory Optimization Approach For Space Maneuver Vehicle Skip Entry Problems PDF full book. Access full book title Design Of Trajectory Optimization Approach For Space Maneuver Vehicle Skip Entry Problems.

Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems

Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems
Author: Runqi Chai
Publisher: Springer
Total Pages: 207
Release: 2019-07-30
Genre: Technology & Engineering
ISBN: 9811398453

Download Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems Book in PDF, ePub and Kindle

This book explores the design of optimal trajectories for space maneuver vehicles (SMVs) using optimal control-based techniques. It begins with a comprehensive introduction to and overview of three main approaches to trajectory optimization, and subsequently focuses on the design of a novel hybrid optimization strategy that combines an initial guess generator with an improved gradient-based inner optimizer. Further, it highlights the development of multi-objective spacecraft trajectory optimization problems, with a particular focus on multi-objective transcription methods and multi-objective evolutionary algorithms. In its final sections, the book studies spacecraft flight scenarios with noise-perturbed dynamics and probabilistic constraints, and designs and validates new chance-constrained optimal control frameworks. The comprehensive and systematic treatment of practical issues in spacecraft trajectory optimization is one of the book’s major features, making it particularly suited for readers who are seeking practical solutions in spacecraft trajectory optimization. It offers a valuable asset for researchers, engineers, and graduate students in GNC systems, engineering optimization, applied optimal control theory, etc.


Spacecraft Trajectory Optimization

Spacecraft Trajectory Optimization
Author: Bruce A. Conway
Publisher: Cambridge University Press
Total Pages: 313
Release: 2010-08-23
Genre: Technology & Engineering
ISBN: 113949077X

Download Spacecraft Trajectory Optimization Book in PDF, ePub and Kindle

This is a long-overdue volume dedicated to space trajectory optimization. Interest in the subject has grown, as space missions of increasing levels of sophistication, complexity, and scientific return - hardly imaginable in the 1960s - have been designed and flown. Although the basic tools of optimization theory remain an accepted canon, there has been a revolution in the manner in which they are applied and in the development of numerical optimization. This volume purposely includes a variety of both analytical and numerical approaches to trajectory optimization. The choice of authors has been guided by the editor's intention to assemble the most expert and active researchers in the various specialities presented. The authors were given considerable freedom to choose their subjects, and although this may yield a somewhat eclectic volume, it also yields chapters written with palpable enthusiasm and relevance to contemporary problems.


Advanced Trajectory Optimization, Guidance and Control Strategies for Aerospace Vehicles

Advanced Trajectory Optimization, Guidance and Control Strategies for Aerospace Vehicles
Author: Runqi Chai
Publisher: Springer Nature
Total Pages: 272
Release: 2023-10-29
Genre: Technology & Engineering
ISBN: 9819943116

Download Advanced Trajectory Optimization, Guidance and Control Strategies for Aerospace Vehicles Book in PDF, ePub and Kindle

This book focuses on the design and application of advanced trajectory optimization and guidance and control (G&C) techniques for aerospace vehicles. Part I of the book focuses on the introduction of constrained aerospace vehicle trajectory optimization problems, with particular emphasis on the design of high-fidelity trajectory optimization methods, heuristic optimization-based strategies, and fast convexification-based algorithms. In Part II, various optimization theory/artificial intelligence (AI)-based methods are constructed and presented, including dynamic programming-based methods, model predictive control-based methods, and deep neural network-based algorithms. Key aspects of the application of these approaches, such as their main advantages and inherent challenges, are detailed and discussed. Some practical implementation considerations are then summarized, together with a number of future research topics. The comprehensive and systematic treatment of practical issues in aerospace trajectory optimization and guidance and control problems is one of the main features of the book, which is particularly suitable for readers interested in learning practical solutions in aerospace trajectory optimization and guidance and control. The book is useful to researchers, engineers, and graduate students in the fields of G&C systems, engineering optimization, applied optimal control theory, etc.


Spacecraft Trajectory Optimization Using Many Embedded Lambert Problems

Spacecraft Trajectory Optimization Using Many Embedded Lambert Problems
Author: David Ryan Ottesen
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Spacecraft Trajectory Optimization Using Many Embedded Lambert Problems Book in PDF, ePub and Kindle

Improvement of spacecraft trajectory optimization approaches, methods, and techniques is critical for better mission design. Preliminary low-fidelity analysis precedes high-fidelity analysis to efficiently explore the space of a problem. The work of this dissertation extends an embedded boundary value problem (EBVP) technique for preliminary design in the two-body problem. The EBVP technique is designed for direct, unconstrained optimization using many, short-arc, embedded Lambert problems that discretize the trajectory. The short arcs share terminal positions to implicitly enforce position continuity and the instantaneous velocity discontinuities in between segments are the control. These coasting arcs and impulsive maneuvers in between segments are defined collectively as a coast-impulse model, similar to the well-known Sims-Flanagan model. Use of EBVPs is not new to spacecraft trajectory optimization, extensively used in primer vector theory, flyby-tour design, direct impulsive-maneuver optimization, and more. Lack of fast and accurate BVP solvers has prevented the use of the EBVP technique on problems with more than dozens of segments. For the two-body problem, a recently-developed Lambert solver, complete with the necessary partials, enables the extension of the EBVP technique to many hundreds to thousands of segments and hundreds of revolutions. The use of many short arcs guarantees existence and uniqueness for the Lambert problem of each segment. Furthermore, short arcs simultaneously approximate low thrust and eliminates the need to know the structure of a high-thrust impulsive-maneuver solution. A set of examples show the EBVP technique to be efficient, robust, and useful. In particular, an example using 256 revolutions, 6143 segments, and a constant flight time per segment, optimizes in 5.5 hours using a single processor. After this initial demonstration, the EBVP technique is improved by a function which enables variable flight time per segment. Guided by the well-known Sundman transformation, these piecewise Sundman transformation (PST) functions divide the total flight time of the trajectory into spatially-even arcs, importantly not modifying the dynamics. Flight-time functions and their dynamical regularization counterpart are shown to share similar behavior for Keplerian orbit propagation. The PST functions are also shown to extend the EBVP technique to a large design space, where a runtime-feasible transfer with 512 revs and 12287 segments is presented that significantly changes semimajor axis, eccentricity, and inclination. Moreover, another example is presented that transfers through the numerically challenging parabolic boundary, i.e. a transfer from a circular to hyperbolic orbit. Both these examples use an exponent of 3/2 for the PST to enforce the spatially-even arcs or equal steps in eccentric anomaly. Lastly, an optimal control problem is formulated to solve a class of many-revolution trajectories relevant to the EBVP technique. For transfers that minimize thrust-acceleration-squared, primer vector theory enables the mapping of direct, many-impulsive-maneuver trajectories to the indirect, continuous-thrust-acceleration equivalent. The mapping algorithm is independent of how the direct solution is obtained and the mapping computations only require a solver for a BVP and its partial derivatives. For the two-body problem, a Lambert solver is used. The mapping is simple because the impulsive maneuvers and co-states share the same linear space around an optimal trajectory. For numerical results, the direct coast-impulse solutions are demonstrated to converge to the indirect continuous solutions as the number of impulses and segments increase. The two-body design space is explored with a set of three many-revolution, many-segment examples changing semimajor axis, eccentricity, and inclination. The first two examples change either a small amount of semimajor axis or eccentricity, and the third example is a transfer to geosynchronous orbit. Using a single processor, the optimization runtime is seconds to minutes for revolution counts of 10 to 100, while on the order of one hour for examples with up to 500 revolutions. Any of these thrust-acceleration-squared solutions are good candidates to start a homotopy to a higher-fidelity minimization problem with practical constraints


A Combined Global and Local Methodology for Launch Vehicle Trajectory Design-space Exploration and Optimization

A Combined Global and Local Methodology for Launch Vehicle Trajectory Design-space Exploration and Optimization
Author: Michael J. Steffens
Publisher:
Total Pages:
Release: 2014
Genre: Launch vehicles (Astronautics)
ISBN:

Download A Combined Global and Local Methodology for Launch Vehicle Trajectory Design-space Exploration and Optimization Book in PDF, ePub and Kindle

Trajectory optimization is an important part of launch vehicle design and operation. With the high costs of launching payload into orbit, every pound that can be saved increases affordability. One way to save weight in launch vehicle design and operation is by optimizing the ascent trajectory. Launch vehicle trajectory optimization is a field that has been studied since the 1950's. Originally, analytic solutions were sought because computers were slow and inefficient. With the advent of computers, however, different algorithms were developed for the purpose of trajectory optimization. Computer resources were still limited, and as such the algorithms were limited to local optimization methods, which can get stuck in specific regions of the design space. Local methods for trajectory optimization have been well studied and developed. Computer technology continues to advance, and in recent years global optimization has become available for application to a wide variety of problems, including trajectory optimization. The aim of this thesis is to create a methodology that applies global optimization to the trajectory optimization problem. Using information from a global search, the optimization design space can be reduced and a much smaller design space can be analyzed using already existing local methods. This allows for areas of interest in the design space to be identified and further studied and helps overcome the fact that many local methods can get stuck in local optima. The design space included in trajectory optimization is also considered in this thesis. The typical optimization variables are initial conditions and flight control variables. For direct optimization methods, the trajectory phase structure is currently chosen a priori. Including trajectory phase structure variables in the optimization process can yield better solutions. The methodology and phase structure optimization is demonstrated using an earth-to-orbit trajectory of a Delta IV Medium launch vehicle. Different methods of performing the global search and reducing the design space are compared. Local optimization is performed using the industry standard trajectory optimization tool POST. Finally, methods for varying the trajectory phase structure are presented and the results are compared.


A Reinforcement Learning Approach to Spacecraft Trajectory Optimization

A Reinforcement Learning Approach to Spacecraft Trajectory Optimization
Author: Daniel S. Kolosa
Publisher:
Total Pages: 69
Release: 2019
Genre: Reinforcement learning
ISBN:

Download A Reinforcement Learning Approach to Spacecraft Trajectory Optimization Book in PDF, ePub and Kindle

This dissertation explores a novel method of solving low-thrust spacecraft targeting problems using reinforcement learning. A reinforcement learning algorithm based on Deep Deterministic Policy Gradients was developed to solve low-thrust trajectory optimization problems. The algorithm consists of two neural networks, an actor network and a critic network. The actor approximates a thrust magnitude given the current spacecraft state expressed as a set of orbital elements. The critic network evaluates the action taken by the actor based on the state and action taken. Three different types of trajectory problems were solved, a generalized orbit change maneuver, a semimajor axis change maneuver, and an inclination change maneuver. When training the algorithm in a simulated space environment, it was able to solve both the generalized orbit change and semimajor axis change maneuvers with no prior knowledge of the environment’s dynamics. The robustness of the algorithm was tested on an inclination change maneuver with a randomized set of initial states. After training, the algorithm was able to successfully generalize and solve new inclination changes that it has not seen before. This method has potential future applications in developing more complex low-thrust maneuvers or real-time autonomous spaceflight control.


Analytical Investigations in Aircraft and Spacecraft Trajectory Optimization and Optimal Guidance

Analytical Investigations in Aircraft and Spacecraft Trajectory Optimization and Optimal Guidance
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 188
Release: 2018-07-17
Genre:
ISBN: 9781722945305

Download Analytical Investigations in Aircraft and Spacecraft Trajectory Optimization and Optimal Guidance Book in PDF, ePub and Kindle

A collection of analytical studies is presented related to unconstrained and constrained aircraft (a/c) energy-state modeling and to spacecraft (s/c) motion under continuous thrust. With regard to a/c unconstrained energy-state modeling, the physical origin of the singular perturbation parameter that accounts for the observed 2-time-scale behavior of a/c during energy climbs is identified and explained. With regard to the constrained energy-state modeling, optimal control problems are studied involving active state-variable inequality constraints. Departing from the practical deficiencies of the control programs for such problems that result from the traditional formulations, a complete reformulation is proposed for these problems which, in contrast to the old formulation, will presumably lead to practically useful controllers that can track an inequality constraint boundary asymptotically, and even in the presence of 2-sided perturbations about it. Finally, with regard to s/c motion under continuous thrust, a thrust program is proposed for which the equations of 2-dimensional motion of a space vehicle in orbit, viewed as a point mass, afford an exact analytic solution. The thrust program arises under the assumption of tangential thrust from the costate system corresponding to minimum-fuel, power-limited, coplanar transfers between two arbitrary conics. The thrust program can be used not only with power-limited propulsion systems, but also with any propulsion system capable of generating continuous thrust of controllable magnitude, and, for propulsion types and classes of transfers for which it is sufficiently optimal the results of this report suggest a method of maneuvering during planetocentric or heliocentric orbital operations, requiring a minimum amount of computation; thus uniquely suitable for real-time feedback guidance implementations. Markopoulos, Nikos and Calise, Anthony J. Unspecified Center AIRCRAFT GUIDANCE; CONTROLLERS; FLIGHT PATHS; OPTIMAL CONTROL...