Deep Learning Through Sparse And Low Rank Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Deep Learning Through Sparse And Low Rank Modeling PDF full book. Access full book title Deep Learning Through Sparse And Low Rank Modeling.

Deep Learning through Sparse and Low-Rank Modeling

Deep Learning through Sparse and Low-Rank Modeling
Author: Zhangyang Wang
Publisher: Academic Press
Total Pages: 296
Release: 2019-04-26
Genre: Computers
ISBN: 0128136596

Download Deep Learning through Sparse and Low-Rank Modeling Book in PDF, ePub and Kindle

Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. Combines classical sparse and low-rank models and algorithms with the latest advances in deep learning networks Shows how the structure and algorithms of sparse and low-rank methods improves the performance and interpretability of Deep Learning models Provides tactics on how to build and apply customized deep learning models for various applications


Low-Rank and Sparse Modeling for Visual Analysis

Low-Rank and Sparse Modeling for Visual Analysis
Author: Yun Fu
Publisher: Springer
Total Pages: 240
Release: 2014-10-30
Genre: Computers
ISBN: 331912000X

Download Low-Rank and Sparse Modeling for Visual Analysis Book in PDF, ePub and Kindle

This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.


Generalized Low Rank Models

Generalized Low Rank Models
Author: Madeleine Udell
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Generalized Low Rank Models Book in PDF, ePub and Kindle

Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. This dissertation extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.


Sparse and Low-rank Modeling for Automatic Speech Recognition

Sparse and Low-rank Modeling for Automatic Speech Recognition
Author: Pranay Dighe
Publisher:
Total Pages: 133
Release: 2019
Genre:
ISBN:

Download Sparse and Low-rank Modeling for Automatic Speech Recognition Book in PDF, ePub and Kindle

Mots-clés de l'auteur: automatic speech recognition ; deep neural network ; sparsity ; dictionary learning ; low-rank ; principal component analysis ; far-field speech ; information theory.


Study on Efficient Sparse and Low-rank Optimization and Its Applications

Study on Efficient Sparse and Low-rank Optimization and Its Applications
Author: Jian Lou
Publisher:
Total Pages: 238
Release: 2018
Genre: Algorithms
ISBN:

Download Study on Efficient Sparse and Low-rank Optimization and Its Applications Book in PDF, ePub and Kindle

Sparse and low-rank models have been becoming fundamental machine learning tools and have wide applications in areas including computer vision, data mining, bioinformatics and so on. It is of vital importance, yet of great difficulty, to develop efficient optimization algorithms for solving these models, especially under practical design considerations of computational, communicational and privacy restrictions for ever-growing larger scale problems. This thesis proposes a set of new algorithms to improve the efficiency of the sparse and low-rank models optimization. First, facing a large number of data samples during training of empirical risk minimization (ERM) with structured sparse regularization, the gradient computation part of the optimization can be computationally expensive and becomes the bottleneck. Therefore, I propose two gradient efficient optimization algorithms to reduce the total or per-iteration computational cost of the gradient evaluation step, which are new variants of the widely used generalized conditional gradient (GCG) method and incremental proximal gradient (PG) method, correspondingly. In detail, I propose a novel algorithm under GCG framework that requires optimal count of gradient evaluations as proximal gradient. I also propose a refined variant for a type of gauge regularized problem, where approximation techniques are allowed to further accelerate linear subproblem computation. Moreover, under the incremental proximal gradient framework, I propose to approximate the composite penalty by its proximal average under incremental gradient framework, so that a trade-off is made between precision and efficiency. Theoretical analysis and empirical studies show the efficiency of the proposed methods. Furthermore, the large data dimension (e.g. the large frame size of high-resolution image and video data) can lead to high per-iteration computational complexity, thus results into poor-scalability of the optimization algorithm from practical perspective. In particular, in spectral k-support norm regularized robust low-rank matrix and tensor optimization, traditional proximal map based alternating direction method of multipliers (ADMM) requires to evaluate a super-linear complexity subproblem in each iteration. I propose a set of per-iteration computational efficient alternatives to reduce the cost to linear and nearly linear with respect to the input data dimension for matrix and tensor case, correspondingly. The proposed algorithms consider the dual objective of the original problem that can take advantage of the more computational efficient linear oracle of the spectral k-support norm to be evaluated. Further, by studying the sub-gradient of the loss of the dual objective, a line-search strategy is adopted in the algorithm to enable it to adapt to the Holder smoothness. The overall convergence rate is also provided. Experiments on various computer vision and image processing applications demonstrate the superior prediction performance and computation efficiency of the proposed algorithm. In addition, since machine learning datasets often contain sensitive individual information, privacy-preserving becomes more and more important during sparse optimization. I provide two differentially private optimization algorithms under two common large-scale machine learning computing contexts, i.e., distributed and streaming optimization, correspondingly. For the distributed setting, I develop a new algorithm with 1) guaranteed strict differential privacy requirement, 2) nearly optimal utility and 3) reduced uplink communication complexity, for a nearly unexplored context with features partitioned among different parties under privacy restriction. For the streaming setting, I propose to improve the utility of the private algorithm by trading the privacy of distant input instances, under the differential privacy restriction. I show that the proposed method can either solve the private approximation function by a projected gradient update for projection-friendly constraints, or by a conditional gradient step for linear oracle-friendly constraint, both of which improve the regret bound to match the nonprivate optimal counterpart.


Artificial Intelligence, Evolutionary Computing and Metaheuristics

Artificial Intelligence, Evolutionary Computing and Metaheuristics
Author: Xin-She Yang
Publisher: Springer
Total Pages: 797
Release: 2012-07-27
Genre: Technology & Engineering
ISBN: 3642296947

Download Artificial Intelligence, Evolutionary Computing and Metaheuristics Book in PDF, ePub and Kindle

Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.


Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Handbook of Robust Low-Rank and Sparse Matrix Decomposition
Author: Thierry Bouwmans
Publisher: CRC Press
Total Pages: 553
Release: 2016-05-27
Genre: Computers
ISBN: 1498724639

Download Handbook of Robust Low-Rank and Sparse Matrix Decomposition Book in PDF, ePub and Kindle

Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.


High-Dimensional Data Analysis with Low-Dimensional Models

High-Dimensional Data Analysis with Low-Dimensional Models
Author: John Wright
Publisher: Cambridge University Press
Total Pages: 718
Release: 2022-01-13
Genre: Computers
ISBN: 1108805558

Download High-Dimensional Data Analysis with Low-Dimensional Models Book in PDF, ePub and Kindle

Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.


Low-Rank Models in Visual Analysis

Low-Rank Models in Visual Analysis
Author: Zhouchen Lin
Publisher: Academic Press
Total Pages: 262
Release: 2017-06-06
Genre: Computers
ISBN: 0128127325

Download Low-Rank Models in Visual Analysis Book in PDF, ePub and Kindle

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems. Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications Provides a full and clear explanation of the theory behind the models Includes detailed proofs in the appendices


Generalized Low Rank Models

Generalized Low Rank Models
Author: Madeleine Udell
Publisher:
Total Pages: 118
Release: 2016
Genre: Principal components analysis
ISBN: 9781680831412

Download Generalized Low Rank Models Book in PDF, ePub and Kindle

Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well-known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.