Data Analysis For Direct Numerical Simulations Of Turbulent Combustion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Data Analysis For Direct Numerical Simulations Of Turbulent Combustion PDF full book. Access full book title Data Analysis For Direct Numerical Simulations Of Turbulent Combustion.

Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Data Analysis for Direct Numerical Simulations of Turbulent Combustion
Author: Heinz Pitsch
Publisher: Springer Nature
Total Pages: 294
Release: 2020-05-28
Genre: Mathematics
ISBN: 3030447189

Download Data Analysis for Direct Numerical Simulations of Turbulent Combustion Book in PDF, ePub and Kindle

This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.


Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Data Analysis for Direct Numerical Simulations of Turbulent Combustion
Author:
Publisher:
Total Pages:
Release: 2020
Genre: Big data
ISBN: 9783030447199

Download Data Analysis for Direct Numerical Simulations of Turbulent Combustion Book in PDF, ePub and Kindle

This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.


Feature-Based Statistical Analysis of Combustion Simulation Data

Feature-Based Statistical Analysis of Combustion Simulation Data
Author:
Publisher:
Total Pages: 12
Release: 2011
Genre:
ISBN:

Download Feature-Based Statistical Analysis of Combustion Simulation Data Book in PDF, ePub and Kindle

We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing and reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.


Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion

Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion
Author: Bart Merci
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2011-06-20
Genre: Technology & Engineering
ISBN: 9400714092

Download Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion Book in PDF, ePub and Kindle

This book reflects the outcome of the 1st International Workshop on Turbulent Spray Combustion held in 2009 in Corsica (France). The focus is on reporting the progress of experimental and numerical techniques in two-phase flows, with emphasis on spray combustion. The motivation for studies in this area is that knowledge of the dominant phenomena and their interactions in such flow systems is essential for the development of predictive models and their use in combustor and gas turbine design. This necessitates the development of accurate experimental methods and numerical modelling techniques. The workshop aimed at providing an opportunity for experts and young researchers to present the state-of-the-art, discuss new developments or techniques and exchange ideas in the areas of experimentations, modelling and simulation of reactive multiphase flows. The first two papers reflect the contents of the invited lectures, given by experts in the field of turbulent spray combustion. The first concerns computational issues, while the second deals with experiments. These lectures initiated very interesting and interactive discussions among the researchers, further pursued in contributed poster presentations. Contributions 3 and 4 focus on some aspects of the impact of the interaction between fuel evaporation and combustion on spray combustion in the context of gas turbines, while the final article deals with the interaction between evaporation and turbulence.


Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion
Author: Santanu De
Publisher: Springer
Total Pages: 661
Release: 2017-12-12
Genre: Science
ISBN: 9811074100

Download Modeling and Simulation of Turbulent Combustion Book in PDF, ePub and Kindle

This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.


Turbulent Combustion Modeling

Turbulent Combustion Modeling
Author: Tarek Echekki
Publisher: Springer Science & Business Media
Total Pages: 496
Release: 2010-12-25
Genre: Technology & Engineering
ISBN: 9400704127

Download Turbulent Combustion Modeling Book in PDF, ePub and Kindle

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.


Turbulent Premixed Flames

Turbulent Premixed Flames
Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
Total Pages: 447
Release: 2011-04-25
Genre: Technology & Engineering
ISBN: 1139498584

Download Turbulent Premixed Flames Book in PDF, ePub and Kindle

A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.


A Reacting Jet Direct Numerical Simulation for Assessing Combustion Model Error

A Reacting Jet Direct Numerical Simulation for Assessing Combustion Model Error
Author: Bryan William Reuter
Publisher:
Total Pages: 362
Release: 2021
Genre:
ISBN:

Download A Reacting Jet Direct Numerical Simulation for Assessing Combustion Model Error Book in PDF, ePub and Kindle

The simulation of turbulent combustion systems is a vital tool in the design and development of new technologies for power generation, transportation, defense applications, and industrial heating. In an engineering design cycle, modeling realistic device configurations in a cost- and time-effective manner is required. Due to their flexibility and computational tractability, Reynolds-Averaged Navier-Stokes (RANS)-based models are most commonly used for these purposes. However, these models are known to be inadequate. Turbulent combustion is the coupling of two multiscale, nonlinear phenomena which individually have many modeling challenges. Hence, it is unsurprising that the modeling ansatzes and simplifying assumptions which lead to these practical RANS-based models are suspect. Since RANS-based models will continue to be the dominant tool for turbulent combustion simulation, it is necessary to improve their predictivity through a better understanding of their deficiencies. The are three main modeling issues for turbulent combustion: modeling the turbulent flow, representing the chemical reactions, and capturing the interaction between the turbulence and the chemistry. Model errors can easily be conflated when attempting to quantify deficiencies in this multiphysics context where many individual models are coupled. This work introduces a new technique for isolating these errors through the creation of a flamelet-based direct numerical simulation (DNS) of a nonpremixed, temporally-evolving, planar, reacting jet. DNS is a technique which resolves all lengthscales and timescales of the turbulent flow, providing high-quality data for model development but at a significant computational cost. In the turbulent combustion context, the turbulence-chemistry interaction is also fully resolved. By closing the DNS with a steady laminar flamelet representation, a typical chemical reactions model for RANS-based simulations, RANS turbulence closures and turbulence-chemistry interaction models can be evaluated in isolation through a priori testing. Conversely, by comparing the flamelet DNS to a second DNS employing a higher-fidelity chemistry model, the flamelet closure and its impact on the flame's evolution can be interrogated directly. To obtain the DNS data, a novel algorithm for solving the variable-density, low-Mach Navier-Stokes equations extending the method of Kim, Moin, and Moser for incompressible flow is detailed here. It is a pseudospectral Fourier/B-spline collocation approach which obtains second order accuracy in time and numerical stability for large density ratios with an efficient, matrix-free, iterative treatment of the scalar equations. The a posteriori comparisons of the flamelet DNS and the complex chemistry DNS suggest the flamelet model can significantly alter the evolution of the mean state of the reacting jet; however, violations of global conservation were identified in the complex chemistry DNS. Therefore, no strong conclusions can be made about the chemical reactions model from the comparisons. Significant shortcomings have been identified in the a priori evaluations of the aforementioned RANS closures for turbulent transport, scalar mixing, and turbulence-chemistry interaction, where the flamelet model is taken to be exact. Finally, a flawed assumption in the steady laminar flamelet approach has been directly linked to nonphysical behavior of the density for small values of the scalar dissipation rate


15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020)

15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020)
Author: Álvaro Herrero
Publisher: Springer Nature
Total Pages: 880
Release: 2020-08-28
Genre: Technology & Engineering
ISBN: 303057802X

Download 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020) Book in PDF, ePub and Kindle

This book contains accepted papers presented at SOCO 2020 conference held in the beautiful and historic city of Burgos (Spain), in September 2020. Soft computing represents a collection or set of computational techniques in machine learning, computer science and some engineering disciplines, which investigate, simulate, and analyze very complex issues and phenomena. After a through peer-review process, the SOCO 2020 International Program Committee selected 83 papers which are published in these conference proceedings and represents an acceptance rate of 35%. Due to the COVID-19 outbreak, the SOCO 2020 edition was blended, combining on-site and on-line participation. In this relevant edition a special emphasis was put on the organization of special sessions. Eleven special session were organized related to relevant topics such as: Soft Computing Applications in Precision Agriculture, Manufacturing and Management Systems, Management of Industrial and Environmental Enterprises, Logistics and Transportation Systems, Robotics and Autonomous Vehicles, Computer Vision, Laser-Based Sensing and Measurement and other topics such as Forecasting Industrial Time Series, IoT, Big Data and Cyber Physical Systems, Non-linear Dynamical Systems and Fluid Dynamics, Modeling and Control systems The selection of papers was extremely rigorous in order to maintain the high quality of SOCO conference editions and we would like to thank the members of the Program Committees for their hard work in the reviewing process. This is a crucial process to the creation of a high standard conference and the SOCO conference would not exist without their help.