Cyclic Plasticity Of Metals PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Cyclic Plasticity Of Metals PDF full book. Access full book title Cyclic Plasticity Of Metals.

Cyclic Plasticity of Metals

Cyclic Plasticity of Metals
Author: Hamid Jahed
Publisher: Elsevier
Total Pages: 470
Release: 2021-11-11
Genre: Technology & Engineering
ISBN: 0128192941

Download Cyclic Plasticity of Metals Book in PDF, ePub and Kindle

Cyclic Plasticity of Metals: Modeling Fundamentals and Applications provides an exhaustive overview of the fundamentals and applications of various cyclic plasticity models including forming and spring back, notch analysis, fatigue life prediction, and more. Covering metals with an array of different structures, such as hexagonal close packed (HCP), face centered cubic (FCC), and body centered cubic (BCC), the book starts with an introduction to experimental macroscopic and microscopic observations of cyclic plasticity and then segues into a discussion of the fundamentals of the different cyclic plasticity models, covering topics such as kinematics, stress and strain tensors, elasticity, plastic flow rule, and an array of other concepts. A review of the available models follows, and the book concludes with chapters covering finite element implementation and industrial applications of the various models. Reviews constitutive cyclic plasticity models for various metals and alloys with different cell structures (cubic, hexagonal, and more), allowing for more accurate evaluation of a component’s performance under loading Provides real-world industrial context by demonstrating applications of cyclic plasticity models in the analysis of engineering components Overview of latest models allows researchers to extend available models or develop new ones for analysis of an array of metals under more complex loading conditions


Cyclic Plasticity of Metals

Cyclic Plasticity of Metals
Author: Ole Bøcker Pedersen
Publisher:
Total Pages: 65
Release: 1991
Genre: Metals
ISBN: 9788755016859

Download Cyclic Plasticity of Metals Book in PDF, ePub and Kindle


Cyclic Plasticity of Engineering Materials

Cyclic Plasticity of Engineering Materials
Author: Guozheng Kang
Publisher: John Wiley & Sons
Total Pages: 920
Release: 2017-03-10
Genre: Technology & Engineering
ISBN: 1119180813

Download Cyclic Plasticity of Engineering Materials Book in PDF, ePub and Kindle

New contributions to the cyclic plasticity of engineering materials Written by leading experts in the field, this book provides an authoritative and comprehensive introduction to cyclic plasticity of metals, polymers, composites and shape memory alloys. Each chapter is devoted to fundamentals of cyclic plasticity or to one of the major classes of materials, thereby providing a wide coverage of the field. The book deals with experimental observations on metals, composites, polymers and shape memory alloys, and the corresponding cyclic plasticity models for metals, polymers, particle reinforced metal matrix composites and shape memory alloys. Also, the thermo-mechanical coupled cyclic plasticity models are discussed for metals and shape memory alloys. Key features: Provides a comprehensive introduction to cyclic plasticity Presents Macroscopic and microscopic observations on the ratchetting of different materials Establishes cyclic plasticity constitutive models for different materials. Analysis of cyclic plasticity in engineering structures. This book is an important reference for students, practicing engineers and researchers who study cyclic plasticity in the areas of mechanical, civil, nuclear, and aerospace engineering as well as materials science.


Plasticity and Creep of Metals

Plasticity and Creep of Metals
Author: Andrew Rusinko
Publisher: Springer Science & Business Media
Total Pages: 442
Release: 2011-07-24
Genre: Science
ISBN: 3642212131

Download Plasticity and Creep of Metals Book in PDF, ePub and Kindle

This book serves both as a textbook and a scientific work. As a textbook, the work gives a clear, thorough and systematic presentation of the fundamental postulates, theorems and principles and their applications of the classical mathematical theories of plasticity and creep. In addition to the mathematical theories, the physical theory of plasticity, the book presents the Budiansky concept of slip and its modification by M. Leonov. Special attention is given to the analysis of the advantages and shortcomings of the classical theories. In its main part, the book presents the synthetic theory of irreversible deformations, which is based on the mathematical Sanders flow plasticity theory and the physical theory, the Budiansky concept of slip. The main peculiarity of the synthetic theory is that the formulae for both plastic and creep deformation, as well their interrelations, can be derived from the single constitutive equation. Furthermore, the synthetic theory, as physical one, can take into account the real processes that take place in solids at irreversible deformation. This widens considerably the potential of the synthetic theory. In the framework of the synthetic theory such problems as creep delay, the Hazen-Kelly effect, the deformation at the break of the load trajectory, the influence of the rate of loading on the stress-strain diagram, creep at the changes of load, creep at unloading and reversed creep, have been analytically described. In the last chapter, the book shows the solution of some contemporary problems of plasticity and creep: Creep deformation at cyclic abrupt changes of temperature, The influence of irradiation on the plastic and creep deformation, Peculiarities of deformation at the phase transformation of some metals.


Metal Plasticity and Fatigue at High Temperature

Metal Plasticity and Fatigue at High Temperature
Author: Denis Benasciutti
Publisher: MDPI
Total Pages: 220
Release: 2020-05-20
Genre: Technology & Engineering
ISBN: 3039287702

Download Metal Plasticity and Fatigue at High Temperature Book in PDF, ePub and Kindle

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.


Plasticity of Metals: Experiments, Models, Computation

Plasticity of Metals: Experiments, Models, Computation
Author: Elmar Steck
Publisher: Wiley-VCH
Total Pages: 440
Release: 2001
Genre: Science
ISBN:

Download Plasticity of Metals: Experiments, Models, Computation Book in PDF, ePub and Kindle

This is the final report, drawing its conclusions and results from many individual papers and co-workers at the Institute for Structural Analysis of the Technical University of Braunschweig. It shows the correlation between energetic and mechanical quantities of face-centred cubic metals, cold worked and softened to different states. Constitutive models for the plastic of metals are developed and the application of these models is presented. The improvements achieved by this contribution cover the material functions, the shape of yield surfaces, and the consideration of distributed experimental data within the mumerical analysis.