Current Challenges In Stability Issues For Numerical Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Current Challenges In Stability Issues For Numerical Differential Equations PDF full book. Access full book title Current Challenges In Stability Issues For Numerical Differential Equations.

Current Challenges in Stability Issues for Numerical Differential Equations

Current Challenges in Stability Issues for Numerical Differential Equations
Author: Wolf-Jürgen Beyn
Publisher: Springer
Total Pages: 324
Release: 2013-12-12
Genre: Mathematics
ISBN: 3319013009

Download Current Challenges in Stability Issues for Numerical Differential Equations Book in PDF, ePub and Kindle

This volume addresses some of the research areas in the general field of stability studies for differential equations, with emphasis on issues of concern for numerical studies. Topics considered include: (i) the long time integration of Hamiltonian Ordinary DEs and highly oscillatory systems, (ii) connection between stochastic DEs and geometric integration using the Markov chain Monte Carlo method, (iii) computation of dynamic patterns in evolutionary partial DEs, (iv) decomposition of matrices depending on parameters and localization of singularities, and (v) uniform stability analysis for time dependent linear initial value problems of ODEs. The problems considered in this volume are of interest to people working on numerical as well as qualitative aspects of differential equations, and it will serve both as a reference and as an entry point into further research.


Delay Differential Equations and Applications to Biology

Delay Differential Equations and Applications to Biology
Author: Fathalla A. Rihan
Publisher: Springer Nature
Total Pages: 292
Release: 2021-08-19
Genre: Mathematics
ISBN: 9811606269

Download Delay Differential Equations and Applications to Biology Book in PDF, ePub and Kindle

This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.


Numerical Methods for Singularly Perturbed Differential Equations

Numerical Methods for Singularly Perturbed Differential Equations
Author: Hans-Görg Roos
Publisher: Springer Science & Business Media
Total Pages: 364
Release: 2013-06-29
Genre: Mathematics
ISBN: 3662032066

Download Numerical Methods for Singularly Perturbed Differential Equations Book in PDF, ePub and Kindle

The analysis of singular perturbed differential equations began early in this century, when approximate solutions were constructed from asymptotic ex pansions. (Preliminary attempts appear in the nineteenth century [vD94].) This technique has flourished since the mid-1960s. Its principal ideas and methods are described in several textbooks. Nevertheless, asymptotic ex pansions may be impossible to construct or may fail to simplify the given problem; then numerical approximations are often the only option. The systematic study of numerical methods for singular perturbation problems started somewhat later - in the 1970s. While the research frontier has been steadily pushed back, the exposition of new developments in the analysis of numerical methods has been neglected. Perhaps the only example of a textbook that concentrates on this analysis is [DMS80], which collects various results for ordinary differential equations, but many methods and techniques that are relevant today (especially for partial differential equa tions) were developed after 1980.Thus contemporary researchers must comb the literature to acquaint themselves with earlier work. Our purposes in writing this introductory book are twofold. First, we aim to present a structured account of recent ideas in the numerical analysis of singularly perturbed differential equations. Second, this important area has many open problems and we hope that our book will stimulate further investigations.Our choice of topics is inevitably personal and reflects our own main interests.


Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II
Author: Ernst Hairer
Publisher: Springer
Total Pages: 627
Release: 2010-03-10
Genre: Mathematics
ISBN: 3642052215

Download Solving Ordinary Differential Equations II Book in PDF, ePub and Kindle

The subject of this book is the solution of stiff differential equations and of differential-algebraic systems. This second edition contains new material including new numerical tests, recent progress in numerical differential-algebraic equations, and improved FORTRAN codes. From the reviews: "A superb book...Throughout, illuminating graphics, sketches and quotes from papers of researchers in the field add an element of easy informality and motivate the text." --MATHEMATICS TODAY


Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations
Author: David F. Griffiths
Publisher: Springer Science & Business Media
Total Pages: 274
Release: 2010-11-11
Genre: Mathematics
ISBN: 0857291483

Download Numerical Methods for Ordinary Differential Equations Book in PDF, ePub and Kindle

Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com


Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I
Author: Ernst Hairer
Publisher: Springer Science & Business Media
Total Pages: 541
Release: 2008-04-03
Genre: Mathematics
ISBN: 354078862X

Download Solving Ordinary Differential Equations I Book in PDF, ePub and Kindle

This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.


Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations
Author: J. C. Butcher
Publisher: John Wiley & Sons
Total Pages: 544
Release: 2016-07-11
Genre: Mathematics
ISBN: 1119121515

Download Numerical Methods for Ordinary Differential Equations Book in PDF, ePub and Kindle

A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.


Stability of Linear Delay Differential Equations

Stability of Linear Delay Differential Equations
Author: Dimitri Breda
Publisher: Springer
Total Pages: 162
Release: 2014-10-21
Genre: Science
ISBN: 149392107X

Download Stability of Linear Delay Differential Equations Book in PDF, ePub and Kindle

This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.