Coupled Hydrogeophysical Inversion For Soil Hydraulic Property Estimation From Time Lapse Geophysical Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Coupled Hydrogeophysical Inversion For Soil Hydraulic Property Estimation From Time Lapse Geophysical Data PDF full book. Access full book title Coupled Hydrogeophysical Inversion For Soil Hydraulic Property Estimation From Time Lapse Geophysical Data.

Integrated Imaging of the Earth

Integrated Imaging of the Earth
Author: Max Moorkamp
Publisher: John Wiley & Sons
Total Pages: 270
Release: 2016-03-23
Genre: Science
ISBN: 111892908X

Download Integrated Imaging of the Earth Book in PDF, ePub and Kindle

Reliable and detailed information about the Earth’s subsurface is of crucial importance throughout the geosciences. Quantitative integration of all available geophysical and geological data helps to make Earth models more robust and reliable. The aim of this book is to summarize and synthesize the growing literature on combining various types of geophysical and other geoscientific data. The approaches that have been developed to date encompass joint inversion, cooperative inversion, and statistical post-inversion analysis methods, each with different benefits and assumptions. Starting with the foundations of inverse theory, this book systematically describes the mathematical and theoretical aspects of how to best integrate different geophysical datasets with geological prior understanding and other complimentary data. This foundational basis is followed by chapters that demonstrate the diverse range of applications for which integrated methods have been used to date. These range from imaging the hydrogeological properties of the near-surface to natural resource exploration and probing the composition of the lithosphere and the deep Earth. Each chapter is written by leading experts in the field, which makes this book the definitive reference on integrated imaging of the Earth. Highlights of this volume include: Complete coverage of the theoretical foundations of integrated imaging approaches from inverse theory to different coupling methods and quantitative evaluation of the resulting models Comprehensive overview of current applications of integrated imaging including hydrological investigations, natural resource exploration, and imaging the deep Earth Detailed case studies of integrated approaches providing valuable guidance for both experienced users and researchers new to joint inversion. This volume will be a valuable resource for graduate students, academics, industry practitioners, and researchers who are interested in using or developing integrated imaging approaches.


Development and Application of a Coupled Hydrogeophysical Inversion Model for Estimating Soil and Root Properties

Development and Application of a Coupled Hydrogeophysical Inversion Model for Estimating Soil and Root Properties
Author: Alexandria S Kuhl
Publisher:
Total Pages: 147
Release: 2020
Genre: Electronic dissertations
ISBN:

Download Development and Application of a Coupled Hydrogeophysical Inversion Model for Estimating Soil and Root Properties Book in PDF, ePub and Kindle

Vegetation and water on the landscape are directly linked, with leaf area controlling the partitioning of evapotranspiration, a process which creates a microclimate in the atmosphere above the plants. Therefore, widespread alterations to land use has potentially large implications for the water balance at regional and global scales. Unfortunately, many challenges persist that limit our ability to model with high confidence the biophysical constraints on evapotranspiration. One of the largest unknowns in this complex system is the root distribution, which is highly heterogeneous and dependent on both internal factors like the species and age of the plant, as well as external factors such as the climate and soil conditions. The physical limitations to studying properties below Earth's surface demands innovative approaches to improve our understanding of the interplay between roots, water, and the soil. Geophysical tools, such as electrical resistivity, have been employed for decades to study the properties of the Earth at scales from tens to hundreds of meters. Advancements in observing features such as oil and gas reserves, aquifer properties, and contaminant plumes has led the way to more recent work monitoring shallow soil properties such as water content and salinity. In this dissertation, I advance the field of hydrogeophysics with the development of a novel modeling approach that utilizes electrical resistivity data directly to parameterize root properties of site-specific hydrological models. Building on prior research using coupled hydrogeophysical inversion methods to estimate soil hydrological properties, the model presented and applied here addresses the pressing need for new tools to study root properties at the field scale. Chapter 1 provides a high-level introduction of the background and motivation for this area of research. Chapter 2 establishes the feasibility of the proposed modeling framework at a biofuel research site. Using site-specific soil and climate forcing data, I generated synthetic hydrological and electrical resistivity datasets using fixed soil and root parameters for a plot of maize. I then tested how well the model estimated those parameters under increasing levels of uncertainty. I found that even in the most data-poor scenario, the coupled hydrogeophysical inversion estimated the synthetic parameters with a high degree of accuracy. Chapter 3 proceeds to use the now-established model approach to estimate the root properties of two contrasting biofuel treatments, an annual rotation and a perennial grass. We again found the model returned reasonable estimates of the root distribution and evapotranspiration estimates for both crop types. In Chapter 4 I take advantage of the unique ability afforded by this modeling approach to test whether a theoretical coarse root fraction crossing the plane of the electrode array could produce an amplified resistivity measurement akin to what has been observed in the field. Given those estimates were within reason, subsequent estimates of coarse root fraction in a forested ecosystem were then validated against an index of above ground biomass. A statistically significant relationship was found, providing evidence in the absence of excavated root data that resistivity data can be used to non-invasively estimate the extent and relative quantity of coarse roots. Chapter 5 concludes this work by exploring the statistical relationship between above ground vegetation indices and the spatial and temporal heterogeneity in the observed resistivity data, providing the groundwork for future work modeling coarse root mass in a wide array of forest ecosystems.