Correlated Electrons In Quantum Matter PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Correlated Electrons In Quantum Matter PDF full book. Access full book title Correlated Electrons In Quantum Matter.

Correlated Electrons In Quantum Matter

Correlated Electrons In Quantum Matter
Author: Peter Fulde
Publisher: World Scientific
Total Pages: 550
Release: 2012-08-08
Genre: Science
ISBN: 9814397229

Download Correlated Electrons In Quantum Matter Book in PDF, ePub and Kindle

An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap.It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.


Theoretical Methods for Strongly Correlated Electrons

Theoretical Methods for Strongly Correlated Electrons
Author: David Sénéchal
Publisher: Springer Science & Business Media
Total Pages: 370
Release: 2006-05-09
Genre: Science
ISBN: 0387217177

Download Theoretical Methods for Strongly Correlated Electrons Book in PDF, ePub and Kindle

Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.


Correlated Electrons in Quantum Matter

Correlated Electrons in Quantum Matter
Author: Peter Fulde
Publisher: World Scientific
Total Pages: 550
Release: 2012
Genre: Science
ISBN: 9814390933

Download Correlated Electrons in Quantum Matter Book in PDF, ePub and Kindle

"It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics."--P. [4] of cover.


Electrons in Solids

Electrons in Solids
Author: Hendrik Bluhm
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 405
Release: 2019-04-01
Genre: Science
ISBN: 3110429292

Download Electrons in Solids Book in PDF, ePub and Kindle

As a continuation of classical condensed matter physics texts, this graduate textbook introduces advanced topics of correlated electron systems, mesoscopic transport,quantum computing, optical excitations and topological insulators. The book is focusing on an intuitive understanding of the basic concepts of these rather complex subjects.


Lecture Notes on Electron Correlation and Magnetism

Lecture Notes on Electron Correlation and Magnetism
Author: Patrik Fazekas
Publisher: World Scientific
Total Pages: 794
Release: 1999
Genre: Science
ISBN: 9810224745

Download Lecture Notes on Electron Correlation and Magnetism Book in PDF, ePub and Kindle

Readership: Graduate students and researchers in condensed matter physics.


Emergent Phenomena in Correlated Matter

Emergent Phenomena in Correlated Matter
Author: Eva Pavarini
Publisher: Forschungszentrum Jülich
Total Pages: 562
Release: 2013
Genre:
ISBN: 3893368841

Download Emergent Phenomena in Correlated Matter Book in PDF, ePub and Kindle


Electron Correlation in Metals

Electron Correlation in Metals
Author: K. Yamada
Publisher: Cambridge University Press
Total Pages: 257
Release: 2010-06-24
Genre: Science
ISBN: 1139453068

Download Electron Correlation in Metals Book in PDF, ePub and Kindle

Since the discovery of high Tc superconductivity, the role of electron correlation on superconductivity has been an important issue in condensed matter physics. Here the role of electron correlation in metals is explained in detail on the basis of the Fermi liquid theory. The book, originally published in 2004, discusses the following issues: enhancements of electronic specific heat and magnetic susceptibility, effects of electron correlation on transport phenomena such as electric resistivity and Hall coefficient, magnetism, Mott transition and unconventional superconductivity. These originate commonly from the Coulomb repulsion between electrons. In particular, superconductivity in strongly correlated electron systems is discussed with a unified point of view. This book is written to explain interesting physics in metals for undergraduate and graduate students and researchers in condensed matter physics.


Strongly Correlated Electrons in Two Dimensions

Strongly Correlated Electrons in Two Dimensions
Author: Sergey Kravchenko
Publisher: CRC Press
Total Pages: 244
Release: 2017-05-25
Genre: Science
ISBN: 9814745383

Download Strongly Correlated Electrons in Two Dimensions Book in PDF, ePub and Kindle

The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.


Quantum Information Meets Quantum Matter

Quantum Information Meets Quantum Matter
Author: Bei Zeng
Publisher: Springer
Total Pages: 364
Release: 2019-03-28
Genre: Computers
ISBN: 1493990845

Download Quantum Information Meets Quantum Matter Book in PDF, ePub and Kindle

This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.


Quantum Field Theory in Strongly Correlated Electronic Systems

Quantum Field Theory in Strongly Correlated Electronic Systems
Author: Naoto Nagaosa
Publisher: Springer Science & Business Media
Total Pages: 188
Release: 1999-09-20
Genre: Science
ISBN: 9783540659815

Download Quantum Field Theory in Strongly Correlated Electronic Systems Book in PDF, ePub and Kindle

In this book the author extends the concepts introduced in his Quantum Field Theory in Condensed Matter Physics to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analyzed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators, and quantum Hall liquids from the point of view of gauge theory.