Construction Of Low Cracking High Performance Bridge Decks Incorporating New Technology PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Construction Of Low Cracking High Performance Bridge Decks Incorporating New Technology PDF full book. Access full book title Construction Of Low Cracking High Performance Bridge Decks Incorporating New Technology.

Construction of Low-cracking High-performance Bridge Decks Incorporating New Technology

Construction of Low-cracking High-performance Bridge Decks Incorporating New Technology
Author: James Lafikes
Publisher:
Total Pages: 88
Release: 2020
Genre:
ISBN:

Download Construction of Low-cracking High-performance Bridge Decks Incorporating New Technology Book in PDF, ePub and Kindle

Construction and early-age crack evaluations of four bridge decks in Minnesota placed from 2016 to 2018 that incorporate specifications for Internally-Cured Low-Cracking High-Performance Concrete (IC-LC-HPC) are documented in this study. Two additional decks followed specifications for high-performance concrete and served as controls paired with IC-LC-HPC decks. Pre-wetted fine lightweight aggregate (FLWA) was used to provide a targeted internal curing water content of 8% by total weight of binder. The IC-LC-HPC mixtures included 27 to 30% slag cement by total binder weight while the control mixtures included 25 or 35% Class F fly ash by total weight of binder. For one IC-LC-HPC deck, mixture proportions were modified based on a higher FLWA absorption than originally used to design the mixture. One IC-LC-HPC placement failed due to errors in FLWA moisture corrections and concrete batching that led to rejections of batches, leaving an inadequate supply of material to complete the deck. Crack surveys were completed for the IC-LC-HPC and control decks placed in 2016 and 2017. Crack densities at these ages were low compared to most Low-Cracking High-Performance Concrete decks in Kansas and Internally-Cured High-Performance Concrete decks in Indiana. The only exception was one IC-LC-HPC deck that exhibited extensive cracking within one year after placement, which had an overlay with a high cement paste content and no internal curing. This project serves as a foundation for implementing IC-LC-HPC in upcoming bridge decks in Kansas and Minnesota.


Construction of Low-cracking High-performance Bridge Decks Incorporating New Technology Phase II

Construction of Low-cracking High-performance Bridge Decks Incorporating New Technology Phase II
Author: Alireza Bahadori
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Construction of Low-cracking High-performance Bridge Decks Incorporating New Technology Phase II Book in PDF, ePub and Kindle

The construction, crack surveys, and evaluation of 12 bridge decks with internal curing provided by prewetted fine lightweight aggregate and supplementary cementitious materials following internally cured low-cracking high-performance concrete (IC-LC-HPC) specifications of Minnesota or Kansas are described, as well as those from two associated Control decks without IC (MN-Control). Nine IC-LC-HPC decks and one Control deck were monolithic, while three IC-LC-HPC decks and one Control deck had an overlay. The internally cured low-cracking high-performance concrete had paste contents between 23.8 and 25.8 percent by volume. Of the 12 IC-LC-HPC decks, nine were constructed in Minnesota between 2016 and 2020, and three were constructed in Kansas between 2019 and 2021. The performance of the decks is compared with that of earlier IC-LC-HPC bridge decks and low-cracking high-performance concrete (LC-HPC) bridge decks without internal curing. The effects of construction practices on cracking are addressed. The results indicate that the use of overlays on bridge decks is not beneficial in mitigating cracking. The IC-LC-HPC decks constructed exhibited lower average crack densities than those without internal curing. Good construction practices are needed for low-cracking decks. If poor construction practices, which may include poor consolidation and disturbance of concrete after consolidation, over-finishing, delayed application of wet curing, are employed, even decks with low paste contents and internal curing can exhibit high cracking. Delayed curing and over-finishing can also result in scaling damage to bridge decks.


Development and Construction of Low-cracking High-performance Concrete (LC-HPC) Bridge Decks

Development and Construction of Low-cracking High-performance Concrete (LC-HPC) Bridge Decks
Author:
Publisher:
Total Pages: 504
Release: 2009
Genre: Concrete
ISBN:

Download Development and Construction of Low-cracking High-performance Concrete (LC-HPC) Bridge Decks Book in PDF, ePub and Kindle

The development and evaluation of low-cracking high-performance concrete (LC-HPC) for use in bridge decks is described based on laboratory test results and experience gained during the construction of 14 bridges. This report emphasizes the material aspects of the construction process; a companion report will provide a detailed discussion of the construction, design, and environmental factors affecting the performance of LC-HPC bridge decks. The KU Mix design methodology for determining an optimized combined gradation uses the percent retained chart and the Modified Coarseness Factor Chart. The process begins by developing an ideal gradation followed by the determination of an optimum blend of user-selected aggregates. A Microsoft® Excel workbook enhanced with Visual Basic for Applications is available to perform the optimization process at www.iri.ku.edu. The second portion of the study involves evaluating the effect of paste content, water-cement (w/c) ratio, coarse aggregate type, mineral admixture type (silica fume, slag cement, and Class F fly ash each at two levels of replacement), cement type and fineness, a shrinkage reducing admixture, and the duration of curing on the free-shrinkage characteristics of concrete mixtures in the laboratory tested in accordance with ASTM C 157. The final portion of the study presents the specifications, construction experiences, and the preliminary evaluation of 14 LC-HPC bridge decks that have been built or are planned in Kansas. The techniques used to reduce cracking in these bridge decks are presented, and the field experiences for the 18 individual LC-HPC placements completed to date are presented. The results indicate that LC-HPC decks with an optimized aggregate gradation and design w/c ratios of 0.44 and 0.45 with cement contents of 317 and 320 kg/m3 (535 and 540 lb/yd3) have more than adequate workability, finishability, and pumpability, in addition to reduced cracking. A preliminary evaluation of these decks indicates that, on average, the LC-HPC decks are performing at a level approximately equal to or exceeding the best performing monolithic decks in Kansas surveyed over the past 15 years.


High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 1: Structural Behavior

High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 1: Structural Behavior
Author: Robert J. Frosch
Publisher: Purdue University Press
Total Pages: 178
Release: 2008-11-01
Genre: Transportation
ISBN: 9781622601080

Download High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 1: Structural Behavior Book in PDF, ePub and Kindle

Transverse cracking of concrete bridge decks is problematic in numerous states. Cracking has been identified in the negative and positive moment regions of bridges and can appear shortly after opening the structure to live loads. To improve the service life of the bridge deck as well as decrease maintenance costs, changes to current construction practices in Indiana are being considered. A typical bridge deck was instrumented which incorporated the following: increased reinforcement amounts, decreasing reinforcement spacing, and high-performance, low-shrinkage concrete. The low shrinkage concrete was achieved using a ternary concrete mix. The objective of this research was to determine the performance, particularly in terms of transverse cracking and shrinkage, of a bridge incorporating design details meant to reduce cracking. Based on measurements from the bridge, it was determined that maximum tensile strains experienced in the concrete were not sufficient to initiate cracking. An on-site inspection was performed to confirm that cracking had not initiated. The data was analyzed and compared with the behavior of a similarly constructed bridge built with nearly identical reinforcing details, but with a more conventional concrete to evaluate the effect of the HPC. Based on this study, it was observed that full-depth transverse cracks did not occur in the structure and that the use of HPC lowered the magnitude of restrained shrinkage strains and resulting tensile stresses.


Development and Construction of Low-cracking High-performance Concrete (LC-HPC) Bridge Decks

Development and Construction of Low-cracking High-performance Concrete (LC-HPC) Bridge Decks
Author: Heather Anne Kirkvold McLeod
Publisher:
Total Pages: 540
Release: 2009
Genre: Concrete
ISBN: 9781109337402

Download Development and Construction of Low-cracking High-performance Concrete (LC-HPC) Bridge Decks Book in PDF, ePub and Kindle

The development, construction, and evaluation of Low-Cracking High-Performance Concrete (LC-HPC) bridge decks are described based on laboratory test results and experiences gained through the construction of 14 LC-HPC bridge decks. The study is divided into three parts covering (1) an evaluation of the chloride penetration into concrete using long-term salt-ponding tests, (2) a comprehensive discussion of specifications for LC-HPC construction and standard practices in Kansas, and (3) the description of the construction and the preliminary evaluation of LC-HPC bridge decks in Kansas. This report emphasizes the construction process; a companion report (FHWA-KS-09-5) provided a detailed discussion of the influence of material properties on the performance of LC-HPC bridge decks. The first portion of the study involves evaluating the effect of paste content, curing period, water-cement (w/c) ratio, cement type and fineness, mineral admixtures (ground granulated blast furnace slag and silica fume), a shrinkage reducing admixture (SRA), and standard DOT bridge deck mixtures on chloride penetration into solid concrete, tested in accordance with AASHTO T 259. The evaluation includes a total of 33 individual concrete batches and 123 test specimens. The results indicate that for concrete containing only Portland Cement, reductions in paste content result in increased permeability. A reduced paste content and increased w/c ratio result in increased permeability, whereas the presence of mineral admixtures (ground granulated blast furnace slag and silica fume) and longer curing periods result in decreased permeability. Concrete made with medium or coarse ground Type II cement has greater permeability than concrete made with Type I/II cement. It is not clear how the presence of an SRA affects concrete permeability. LC-HPC mixtures have lower permeability than standard DOT mixtures. The second portion of the study describes the specifications for the LC-HPC and Control bridge decks in Kansas. The focus is on the construction methods, including the evolution of the specifications over time. The third portion of the study details the development and construction of 14 LC-HPC and 12 conventional Control bridge decks built in Kansas. The design details, construction experiences, and lessons learned from the LC-HPC bridge decks are described in detail, and an overview of the materials is presented; the design and construction data for each Control deck is provided; and initial crack survey results are evaluated for various construction-related parameters. The results indicate that successful LC-HPC bridge deck construction is repeatable, and that clear and consistent communication between the contractor, owner, and testing personnel is vital for successful construction of LC-HPC decks. Preliminary evaluation of cracking indicates that at early ages, LC-HPC decks are performing better than the Control decks, as well as earlier monolithic decks in Kansas.


Construction of Crack-free Bridge Decks

Construction of Crack-free Bridge Decks
Author: David Darwin
Publisher:
Total Pages: 135
Release: 2017
Genre:
ISBN:

Download Construction of Crack-free Bridge Decks Book in PDF, ePub and Kindle

This serves as the final report on Transportation Pooled-Fund Program Project No. TPF-5(174), "Construction of Crack-Free Bridge Decks." The goal of the study was to implement the most cost-effective techniques for improving bridge deck life through the reduction of cracking. Work was performed both in the laboratory and in the field, resulting in the construction of 17 bridge decks in Kansas that were let under Low-Cracking High-Performance Concrete (LC-HPC) specifications. The report documents the performance of the decks based on crack surveys performed on the LC-HPC decks and matching control bridge decks. The specifications for LC-HPC bridge decks, which cover aggregates, concrete, and construction procedures, as well as procedures for performing crack surveys, are summarized. The first 13 LC-HPC bridge decks are compared to control decks in terms of crack density as a function of time. Survey results are also presented for three LC-HPC decks without control decks and one deck let under LC-HPC specifications on which the specifications were not enforced. The widths of measured cracks ranged from 0.006 to 0.025 inches (0.15 to 0.64 mm). The LC-HPC bridge decks exhibit less cracking than the matching control decks in the vast majority of cases. Only bridge decks LC-HPC-2 and LC-HPC-3 have higher overall crack densities than their control decks, the two best performing control decks in the program, and the differences are small. The majority of the cracks are transverse and run parallel to the top layer of the deck reinforcement. Relatively short cracks are present near the abutments and propagate perpendicular to the abutments (longitudinally). The study demonstrates the positive effects of reduced cementitious material and cement paste contents, improved early-age and long-term curing, concrete temperature control, limitations on or de-emphasis of maximum concrete compressive strength, limitations on maximum slump, and minimizing finishing operations on minimizing cracking in bridge decks.


High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 2: Materials

High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 2: Materials
Author: Mateusz Radlinski
Publisher: Purdue University Press
Total Pages: 254
Release: 2008-11-01
Genre: Transportation
ISBN: 9781622601097

Download High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 2: Materials Book in PDF, ePub and Kindle

The purpose of this research was to examine the applicability of ternary binder systems containing ordinary portland cement (OPC), class C fly ash (FA) and silica fume (SF) for bridge deck concrete. This was accomplished in two parts, the laboratory part and a field application part. During the laboratory studies, four ternary mixtures, each containing either 20% or 30% FA and either 5% or 7% SF were subjected to four different curing regimes (air drying, 7 days curing compound application and 3 or 7 days wet burlap curing). In general, all four ternary mixtures exhibited very good water and chloride solution transport-controlling properties (resistance to chloride-ion penetration, chloride diffusivity and rate of water absorption). However, it was concluded that in order to ensure adequate strength, good freezing and thawing resistance, satisfactory resistance to salt scaling, and adequate shrinkage cracking resistance the FA content should not exceed 20%, SF content should not exceed 5% (by total mass of binder) and paste content should be kept below 24% by volume of concrete. Further, wet burlap curing for a minimum of 3 days was required to achieve satisfactory performance and to obtain a reliable assessment of in-situ compressive strength (up to 28 days) using maturity method. The second part of this research examined the performance of ternary concrete containing 20% FA and 5% SF in the pilot HPC bridge deck constructed in northern Indiana. Using maturity method developed for the purpose of this study, it was determined that the unexpectedly high RCP values of concrete placed late in the construction season were mostly attributed to low ambient temperature. Additional applications of the developed maturity method were also demonstrated. These include assessment of risk of scaling and reduction in time to corrosion initiation as a function of construction date, as well as estimation of long-term RCP values of concrete subjected to accelerated curing.


Field Monitoring of Shrinkage Cracking Potential in a High-performance Bridge Deck

Field Monitoring of Shrinkage Cracking Potential in a High-performance Bridge Deck
Author: Timothy Walkowich
Publisher:
Total Pages: 107
Release: 2011
Genre: Bridges
ISBN:

Download Field Monitoring of Shrinkage Cracking Potential in a High-performance Bridge Deck Book in PDF, ePub and Kindle

Over the past decade many state engineers throughout New Jersey have reported cracking on High Performance Concrete (HPC) bridge decks at early ages. The presence of cracking early in the life of a high performance deck offsets the benefits gained in using the material as the potential for corrosion begins at the onset of cracking. While many factors apply to bridge deck cracking, the shrinkage of the concrete's mass is a primary concern. Because of shear studs and boundary conditions, among other causes that act in restraining the deck itself, it is important to understand the mechanics of concrete under restraint. The AASHTO Passive Ring Test (PP 34-06) is seeing an increase in use in studies analyzing restrained shrinkage. The test simulates a concrete member of infinite length and allows researchers to study the effects of various parameters on restrained shrinkage. This thesis presents the results of a study that analyzed the ring test's ability to simulate restrained shrinkage on HPC bridge decks. The investigation incorporated an instrumented, simply supported composite bridge deck with laboratory samples taken on the day of the pour as well as a finite element analysis. The results suggest the AASHTO Passive Ring Test simulates the restrained shrinkage of simply supported HPC decks reasonably well. Fewer than 1% of all cracking present on the ring specimens saw complete penetration through the sample with 80-90% of all cracking considered to be micro cracking. While the presence of several cracks along the bridge deck itself showed no correlation with the shrinkage ring specimens, finite element analysis suggests these cracks are a result of adjacent live load. Also, the findings of this study highlight the importance of following design in the field as well as the effect of live load on staged construction of HPC bridge decks.


Concrete Bridge Deck Performance

Concrete Bridge Deck Performance
Author: H. G. Russell
Publisher: Transportation Research Board
Total Pages: 188
Release: 2004
Genre: Bridges
ISBN: 0309070112

Download Concrete Bridge Deck Performance Book in PDF, ePub and Kindle

At head of title: National Cooperative Highway Research Program.