Computationally Efficient Crystal Plasticity Models For Polycrystalline Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computationally Efficient Crystal Plasticity Models For Polycrystalline Materials PDF full book. Access full book title Computationally Efficient Crystal Plasticity Models For Polycrystalline Materials.

Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods
Author: Franz Roters
Publisher: John Wiley & Sons
Total Pages: 188
Release: 2011-08-04
Genre: Technology & Engineering
ISBN: 3527642099

Download Crystal Plasticity Finite Element Methods Book in PDF, ePub and Kindle

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.


Introduction to Texture Analysis

Introduction to Texture Analysis
Author: Olaf Engler
Publisher: CRC Press
Total Pages: 490
Release: 2009-11-16
Genre: Science
ISBN: 1420063669

Download Introduction to Texture Analysis Book in PDF, ePub and Kindle

The first edition of Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping broke new ground by collating seventy years worth of research in a convenient single-source format. Reflecting emerging methods and the evolution of the field, the second edition continues to provide comprehensive coverage of the concepts, pra


Crystal Plasticity Finite Element Simulations Using Discrete Fourier Transforms

Crystal Plasticity Finite Element Simulations Using Discrete Fourier Transforms
Author: Hamad F. Al-Harbi
Publisher:
Total Pages:
Release: 2013
Genre: Crystals
ISBN:

Download Crystal Plasticity Finite Element Simulations Using Discrete Fourier Transforms Book in PDF, ePub and Kindle

Crystallographic texture and its evolution are known to be major sources of anisotropy in polycrystalline metals. Highly simplified phenomenological models cannot usually provide reliable predictions of the materials anisotropy under complex deformation paths, and lack the fidelity needed to optimize the microstructure and mechanical properties during the production process. On the other hand, physics-based models such as crystal plasticity theories have demonstrated remarkable success in predicting the anisotropic mechanical response in polycrystalline metals and the evolution of underlying texture in finite plastic deformation. However, the integration of crystal plasticity models with finite element (FE) simulations tools (called CPFEM) is extremely computationally expensive, and has not been adopted broadly by the advanced materials development community. The current dissertation has mainly focused on addressing the challenges associated with integrating the recently developed spectral database approach with a commercial FE tool to permit computationally efficient simulations of heterogeneous deformations using crystal plasticity theories. More specifically, the spectral database approach to crystal plasticity solutions was successfully integrated with the implicit version of the FE package ABAQUS through a user materials subroutine, UMAT, to conduct more efficient CPFEM simulations on both fcc and bcc polycrystalline materials. It is observed that implementing the crystal plasticity spectral database in a FE code produced excellent predictions similar to the classical CPFEM, but at a significantly faster computational speed. Furthermore, an important application of the CPFEM for the extraction of crystal level plasticity parameters in multiphase materials has been demonstrated in this dissertation. More specifically, CPFEM along with a recently developed data analysis approach for spherical nanoindentation and Orientation Imaging Microscopy (OIM) have been used to extract the critical resolved shear stress of the ferrite phase in dual phase steels. This new methodology offers a novel efficient tool for the extraction of crystal level hardening parameters in any single or multiphase materials.


Implications of Limited Slip in Crystal Plasticity

Implications of Limited Slip in Crystal Plasticity
Author: Jeffrey Townsend Lloyd
Publisher:
Total Pages:
Release: 2010
Genre: Crystals
ISBN:

Download Implications of Limited Slip in Crystal Plasticity Book in PDF, ePub and Kindle

To better understand consequences of classical assumptions regarding deformation mechanisms at the mesoscale, experimental observations of mesoscale deformation are presented. In light of actual micrographics of deformed polycrystals, the Von Mises criterion which states that 5 independent plastic deformation sources are needed at each material point to satisfy compatibility is studied, and the consequences of violating this assumption are presented through comprehensive parametric studies. From these studies, it can be concluded that not only are 5 independent plastic deformation sources not needed or observed at each point, but if less than 5 sources are allowed to be active a new physical understanding of a mechanism for kinematic hardening emerges. Furthermore, for enhanced subgrain rotation and evolution the Von Mises criterion must be violated. The second focus of this work is looking at studies, experiments, and models of mesoscale deformation in order to better understand controlling deformation length scales, so that they can be fed into a combined top-down, bottom-up, non-uniform crystal plasticity model that captures the variability provided by the mesoscale during deformation. This can in turn be used to more accurately model the heterogeneity provided by the response of each grain. The length scale intuited from insight into mesoscale deformation mechanisms through observation of experiments and analytical models is the free slip line length of each slip system, which informs non-uniform material parameters in a crystal plasticity model that control the yielding, hardening, and subsequent softening of each individual slip system. The usefulness of this non-uniform multiscale crystal plasticity model is then explored with respect to its ability to reproduce experimentally measured responses at different strain levels for different size grains. Furthermore, a "Mantle-Core" type model which combines both the non-uniform material parameter model and the limited slip model is created, in which the majority of plastic deformation is accommodated near the grain boundary under multi-slip, and uniform plastic deformation occurs in the bulk dominated by double or triple slip. These models are compared for similar levels of hardening, and the pole figures that result from their deformation are compared to experimental pole figures. While there are other models that can capture the heterogeneity introduced by mesoscale deformation at the grain scale, this combined top-down, bottom-up multiscale crystal plasticity model is by far one of the most computationally efficient as the heterogeneity of the mesoscale is does not emerge by introducing higher order terms, but rather by incorporating the heterogeneity into a simple crystal plasticity formulation. Therefore, as computational power increases, this approach will be among the first that will be able to perform accurate polycrystal level modeling while retaining the heterogeneity introduced by non-local mesoscale deformation mechanisms at the sub-grain scale.


Dislocation Mechanism-Based Crystal Plasticity

Dislocation Mechanism-Based Crystal Plasticity
Author: Zhuo Zhuang
Publisher: Academic Press
Total Pages: 450
Release: 2019-04-12
Genre: Technology & Engineering
ISBN: 0128145927

Download Dislocation Mechanism-Based Crystal Plasticity Book in PDF, ePub and Kindle

Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale Presents crystal plasticity theory without size effect Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale


Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals

Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals
Author: Kuhn, Jannick
Publisher: KIT Scientific Publishing
Total Pages: 224
Release: 2023-04-04
Genre: Technology & Engineering
ISBN: 3731512726

Download Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals Book in PDF, ePub and Kindle

Computational homogenization permits to capture the influence of the microstructure on the cyclic mechanical behavior of polycrystalline metals. In this work we investigate methods to compute Laguerre tessellations as computational cells of polycrystalline microstructures, propose a new method to assign crystallographic orientations to the Laguerre cells and use Bayesian optimization to find suitable parameters for the underlying micromechanical model from macroscopic experiments.


Imperfections in Crystalline Solids

Imperfections in Crystalline Solids
Author: Wei Cai
Publisher: Cambridge University Press
Total Pages: 535
Release: 2016-09-15
Genre: Technology & Engineering
ISBN: 1316571718

Download Imperfections in Crystalline Solids Book in PDF, ePub and Kindle

This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLAB® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.


Strengthening Mechanisms in Crystal Plasticity

Strengthening Mechanisms in Crystal Plasticity
Author: Ali Argon
Publisher: Oxford University Press on Demand
Total Pages: 425
Release: 2008
Genre: Science
ISBN: 0198516002

Download Strengthening Mechanisms in Crystal Plasticity Book in PDF, ePub and Kindle

Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.


Crystal Plasticity Modeling of Polycrystalline Ti-6242 and Study of Local Phenomena

Crystal Plasticity Modeling of Polycrystalline Ti-6242 and Study of Local Phenomena
Author: Dhyanjyoti Deka
Publisher:
Total Pages: 232
Release: 2005
Genre: Polycrystalline semiconductors
ISBN:

Download Crystal Plasticity Modeling of Polycrystalline Ti-6242 and Study of Local Phenomena Book in PDF, ePub and Kindle

Abstract: This work develops an experimentally validated computational model based on crystal plasticity for the analysis of two-phase [alpha]/[beta]Ti-6242 polycrystalline alloys. A rate dependent elasto-crystal plasticity model is incorporated in this model to accommodate anisotropy in material behavior and tension-compression asymmetry inherent to this alloy. A combination of detailed micro-testing, orientation imaging microscopy, computational simulations and minimization process involving Genetic algorithms (GA) is implemented in this study for careful characterization and calibration of the material parameters. Size effects are also considered in this analysis. A homogenized equivalent model of the transformed [beta] colonies is developed for incorporation in the Ti-6242 Finite Element (FE) model. The polycrystalline Ti-6242 computational model is constructed to incorporate accurate phase volume fractions as well as orientation distributions that are statistically equivalent to those observed in the OIM scans. The effects of accurate orientation, misorientation and micro-texture distributions are investigated through simulations using this computational model. The model is used to simulate constant strain rate and creep tests in compression and tension and the results are validated with experiments. The effects of microstructure and creep induced load-shedding on the localization of microstructural stresses and strains are studied for potential crack initiation criteria. Further, the microstructure has been studied at the point of failure in Ti-6242 in tension creep and dwell tests. Critical grains with the highest basal normal stress, stress in the loading direction and equivalent plastic strain are identified in the tension creep test and their specific crystallographic orientations and misorientations are studied. The critical grains in the case of dwell fatigue loading are also identified and a criterion for primary crack nucleation in Ti-6242 is developed.