Computational Partial Differential Equations Using Matlabr PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Partial Differential Equations Using Matlabr PDF full book. Access full book title Computational Partial Differential Equations Using Matlabr.

Computational Partial Differential Equations Using MATLAB

Computational Partial Differential Equations Using MATLAB
Author: Jichun Li
Publisher: CRC Press
Total Pages: 376
Release: 2008-10-20
Genre: Mathematics
ISBN: 1420089056

Download Computational Partial Differential Equations Using MATLAB Book in PDF, ePub and Kindle

This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical


Computational Partial Differential Equations Using MATLAB®

Computational Partial Differential Equations Using MATLAB®
Author: Jichun Li
Publisher: CRC Press
Total Pages: 423
Release: 2019-09-26
Genre: Mathematics
ISBN: 0429556535

Download Computational Partial Differential Equations Using MATLAB® Book in PDF, ePub and Kindle

In this popular text for an Numerical Analysis course, the authors introduce several major methods of solving various partial differential equations (PDEs) including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques including the classic finite difference method, finite element method, and state-of-the-art numercial methods.The text uniquely emphasizes both theoretical numerical analysis and practical implementation of the algorithms in MATLAB. This new edition includes a new chapter, Finite Value Method, the presentation has been tightened, new exercises and applications are included, and the text refers now to the latest release of MATLAB. Key Selling Points: A successful textbook for an undergraduate text on numerical analysis or methods taught in mathematics and computer engineering. This course is taught in every university throughout the world with an engineering department or school. Competitive advantage broader numerical methods (including finite difference, finite element, meshless method, and finite volume method), provides the MATLAB source code for most popular PDEs with detailed explanation about the implementation and theoretical analysis. No other existing textbook in the market offers a good combination of theoretical depth and practical source codes.


Computational Partial Differential Equations

Computational Partial Differential Equations
Author: Hans Petter Langtangen
Publisher: Springer Science & Business Media
Total Pages: 704
Release: 2013-04-17
Genre: Mathematics
ISBN: 3662011700

Download Computational Partial Differential Equations Book in PDF, ePub and Kindle

Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.


An Introduction to Computational Stochastic PDEs

An Introduction to Computational Stochastic PDEs
Author: Gabriel J. Lord
Publisher: Cambridge University Press
Total Pages: 516
Release: 2014-08-11
Genre: Business & Economics
ISBN: 0521899907

Download An Introduction to Computational Stochastic PDEs Book in PDF, ePub and Kindle

This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.


Introduction to Partial Differential Equations with MATLAB

Introduction to Partial Differential Equations with MATLAB
Author: Jeffery M. Cooper
Publisher: Springer Science & Business Media
Total Pages: 549
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461217547

Download Introduction to Partial Differential Equations with MATLAB Book in PDF, ePub and Kindle

Overview The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. The core consists of solution methods, mainly separation of variables, for boundary value problems with constant coeffi cients in geometrically simple domains. Too often an introductory course focuses exclusively on these core problems and techniques and leaves the student with the impression that there is no more to the subject. Questions of existence, uniqueness, and well-posedness are ignored. In particular there is a lack of connection between the analytical side of the subject and the numerical side. Furthermore nonlinear problems are omitted because they are too hard to deal with analytically. Now, however, the availability of convenient, powerful computational software has made it possible to enlarge the scope of the introductory course. My goal in this text is to give the student a broader picture of the subject. In addition to the basic core subjects, I have included material on nonlinear problems and brief discussions of numerical methods. I feel that it is important for the student to see nonlinear problems and numerical methods at the beginning of the course, and not at the end when we run usually run out of time. Furthermore, numerical methods should be introduced for each equation as it is studied, not lumped together in a final chapter.


A Compendium of Partial Differential Equation Models

A Compendium of Partial Differential Equation Models
Author: William E. Schiesser
Publisher: Cambridge University Press
Total Pages: 491
Release: 2009-03-16
Genre: Computers
ISBN: 0521519861

Download A Compendium of Partial Differential Equation Models Book in PDF, ePub and Kindle

Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.


Numerical Computing with MATLAB

Numerical Computing with MATLAB
Author: Cleve B. Moler
Publisher: SIAM
Total Pages: 340
Release: 2010-08-12
Genre: Computers
ISBN: 0898716608

Download Numerical Computing with MATLAB Book in PDF, ePub and Kindle

A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.


An Introduction to Partial Differential Equations with MATLAB

An Introduction to Partial Differential Equations with MATLAB
Author: Matthew P. Coleman
Publisher: CRC Press
Total Pages: 0
Release: 2024-07
Genre: Mathematics
ISBN: 9781032650869

Download An Introduction to Partial Differential Equations with MATLAB Book in PDF, ePub and Kindle

"The first and second editions of "An Introduction to Partial Differential Equation with MATLAB®" gained popularity among instructors and students at various universities throughout the world. Plain mathematical language is used in a friendly manner to provide a basic introduction to partial differential equations focusing on Fourier series and integrals. Suitable for a one- or two-semester introduction to PDEs and Fourier series, the book offers equations based on method of solution and provides both physical and mathematical motivation as much as possible. This third edition changes the book structure by lifting the role of the computational part much closer to the revised analytical portion. The re-designed content will be extremely useful for students of mathematics, physics and engineering who would like to focus on the practical aspects of using the theory of PDEs for modeling and later while taking various courses in numerical analysis, computer science, PDE-based programming, and optimization. Included in this new edition is a substantial amount of material on reviewing computational methods for solving ODEs (symbolically and numerically), visualizing solutions of PDEs, using MATLAB's symbolic programming toolbox, and applying various numerical schemes for computing with regard to numerical solutions in practical applications, along with suggestions for topics of course projects. Students will use sample MATLAB and Python codes available online for their practical experiments and for completing computational lab assignments and course projects"--


Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB

Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB
Author: Alain Vande Wouwer
Publisher: Springer
Total Pages: 416
Release: 2014-06-07
Genre: Technology & Engineering
ISBN: 3319067907

Download Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB Book in PDF, ePub and Kindle

Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB®/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of application examples, in specific areas, which can serve as templates for developing new programs. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB provides a practical introduction to some advanced computational techniques for dynamic system simulation, supported by many worked examples in the text, and a collection of codes available for download from the book’s page at www.springer.com. This text is suitable for self-study by practicing scientists and engineers and as a final-year undergraduate course or at the graduate level.


Computational Mathematics

Computational Mathematics
Author: Robert E. White
Publisher: CRC Press
Total Pages: 403
Release: 2003-09-17
Genre: Mathematics
ISBN: 1135440328

Download Computational Mathematics Book in PDF, ePub and Kindle

Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white. This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether used as an undergraduate textbook, for self-study, or for reference, it builds the foundation you need to make numerical modeling and simulation integral parts of your investigational toolbox.