Computational Methods For The Analysis Of Next Generation Sequencing Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Methods For The Analysis Of Next Generation Sequencing Data PDF full book. Access full book title Computational Methods For The Analysis Of Next Generation Sequencing Data.

Computational Methods for Next Generation Sequencing Data Analysis

Computational Methods for Next Generation Sequencing Data Analysis
Author: Ion Mandoiu
Publisher: John Wiley & Sons
Total Pages: 464
Release: 2016-09-12
Genre: Computers
ISBN: 1119272165

Download Computational Methods for Next Generation Sequencing Data Analysis Book in PDF, ePub and Kindle

Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.


Computational Methods for the Analysis of Next Generation Sequencing Data

Computational Methods for the Analysis of Next Generation Sequencing Data
Author: Wei Wang
Publisher:
Total Pages: 186
Release: 2014
Genre:
ISBN:

Download Computational Methods for the Analysis of Next Generation Sequencing Data Book in PDF, ePub and Kindle

Recently, next generation sequencing (NGS) technology has emerged as a powerful approach and dramatically transformed biomedical research in an unprecedented scale. NGS is expected to replace the traditional hybridization-based microarray technology because of its affordable cost and high digital resolution. Although NGS has significantly extended the ability to study the human genome and to better understand the biology of genomes, the new technology has required profound changes to the data analysis. There is a substantial need for computational methods that allow a convenient analysis of these overwhelmingly high-throughput data sets and address an increasing number of compelling biological questions which are now approachable by NGS technology. This dissertation focuses on the development of computational methods for NGS data analyses. First, two methods are developed and implemented for detecting variants in analysis of individual or pooled DNA sequencing data. SNVer formulates variant calling as a hypothesis testing problem and employs a binomial-binomial model to test the significance of observed allele frequency by taking account of sequencing error. SNVerGUI is a GUI-based desktop tool that is built upon the SNVer model to facilitate the main users of NGS data, such as biologists, geneticists and clinicians who often lack of the programming expertise. Second, collapsing singletons strategy is explored for associating rare variants in a DNA sequencing study. Specifically, a gene-based genome-wide scan based on singleton collapsing is performed to analyze a whole genome sequencing data set, suggesting that collapsing singletons may boost signals for association studies of rare variants in sequencing study. Third, two approaches are proposed to address the 3'UTR switching problem. PolyASeeker is a novel bioinformatics pipeline for identifying polyadenylation cleavage sites from RNA sequencing data, which helps to enhance the knowledge of alternative polyadenylation mechanisms and their roles in gene regulation. A change-point model based on a likelihood ratio test is also proposed to solve such problem in analysis of RNA sequencing data. To date, this is the first method for detecting 3'UTR switching without relying on any prior knowledge of polyadenylation cleavage sites.


Computational Methods for the Analysis of Genomic Data and Biological Processes

Computational Methods for the Analysis of Genomic Data and Biological Processes
Author: Francisco A. Gómez Vela
Publisher: MDPI
Total Pages: 222
Release: 2021-02-05
Genre: Medical
ISBN: 3039437712

Download Computational Methods for the Analysis of Genomic Data and Biological Processes Book in PDF, ePub and Kindle

In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality.


Computational Methods for Analyzing and Visualizing NGS Data

Computational Methods for Analyzing and Visualizing NGS Data
Author: Sruthi Chappidi
Publisher:
Total Pages:
Release: 2019
Genre: Application software
ISBN:

Download Computational Methods for Analyzing and Visualizing NGS Data Book in PDF, ePub and Kindle

Advancements in next-generation sequencing (NGS) technology have enabled the rapid growth and availability of large quantities of DNA and RNA sequences. These sequences from both model and non-model organisms can now be acquired at a low cost. The sequencing of large amounts of genomic and proteomic data empowers scientific achievements, many of which were thought to be impossible, and novel biological applications have been developed to study their genetic contribution to human diseases and evolution. This is especially true for uncovering new insights from comparative genomics to the evolution of the disease. For example, NGS allows researchers to identify all changes between sequences in the sample set, which could be used in a clinical setting for things like early cancer detection. This dissertation describes a set of computational bioinformatic approaches that bridge the gap between the large-scale, high-throughput sequencing data that is available, and the lack of computational tools to make predictions for and assist in evolutionary studies. Specifically, I have focused on developing computational methods that enable analysis and visualization for three distinct research tasks. These tasks focus on NGS data and will range in scope from processed genomic data to raw sequencing data, to viral proteomic data. The first task focused on the visualization of two genomes and the changes required to transform from one sequence into the other, which mimics the evolutionary process that has occurred on these organisms. My contribution to this task is DCJVis. DCJVis is a visualization tool based on a linear-time algorithm that computes the distance between two genomes and visualizes the number and type of genomic operations necessary to transform one genome set into another. The second task focused on developing a software application and efficient algorithmic workflow for analyzing and comparing raw sequence reads of two samples without the need of a reference genome. Most sequence analysis pipelines start with aligning to a known reference. However, this is not an ideal approach as reference genomes are not available for all organisms and alignment inaccuracies can lead to biased results. I developed a reference-free sequence analysis computational tool, NoRef, using k-length substring (k-mer) analysis. I also proposed an efficient k-mer sorting algorithm that decreases execution time by 3-folds compared to traditional sorting methods. Finally, the NoRef workflow outputs the results in the raw sequence read format based on user-selected filters, that can be directly used for downstream analysis. The third task is focused on viral proteomic data analysis and answers the following questions: 1. How many viral genes originate as "stolen host" (human) genes? 2. What viruses most often steal genes from a host (human) and are specific to certain locations within the host? 3. Can we understand the function of the host (human) gene through a viral perspective? To address these questions, I took a computational approach starting with string sequence comparisons and localization prediction using machine learning models to create a comprehensive community data resource that will enable researchers to gain insights into viruses that affect human immunity and diseases.


Computational Methods for Next Generation Sequencing Data Analysis

Computational Methods for Next Generation Sequencing Data Analysis
Author: Ion Mandoiu
Publisher: John Wiley & Sons
Total Pages: 460
Release: 2016-10-03
Genre: Computers
ISBN: 1118169484

Download Computational Methods for Next Generation Sequencing Data Analysis Book in PDF, ePub and Kindle

Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.


Next-Generation Sequencing Data Analysis

Next-Generation Sequencing Data Analysis
Author: Xinkun Wang
Publisher: CRC Press
Total Pages: 252
Release: 2016-04-06
Genre: Mathematics
ISBN: 1482217899

Download Next-Generation Sequencing Data Analysis Book in PDF, ePub and Kindle

A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi


Computational Methods for Analysis of Single Molecule Sequencing Data

Computational Methods for Analysis of Single Molecule Sequencing Data
Author: Ehsan Haghshenas
Publisher:
Total Pages: 127
Release: 2020
Genre:
ISBN:

Download Computational Methods for Analysis of Single Molecule Sequencing Data Book in PDF, ePub and Kindle

Next-generation sequencing (NGS) technologies paved the way to a significant increase in the number of sequenced genomes, both prokaryotic and eukaryotic. This increase provided an opportunity for considerable advancement in genomics and precision medicine. Although NGS technologies have proven their power in many applications such as de novo genome assembly and variation discovery, computational analysis of the data they generate is still far from being perfect. The main limitation of NGS technologies is their short read length relative to the lengths of (common) genomic repeats. Today, newer sequencing technologies (known as single-molecule sequencing or SMS) such as Pacific Biosciences and Oxford Nanopore are producing significantly longer reads, making it theoretically possible to overcome the difficulties imposed by repeat regions. For instance, for the first time, a complete human chromosome was fully assembled using ultra-long reads generated by Oxford Nanopore. Unfortunately, long reads generated by SMS technologies are characterized by a high error rate, which prevents their direct utilization in many of the standard downstream analysis pipelines and poses new computational challenges. This motivates the development of new computational tools specifically designed for SMS long reads. In this thesis, we present three computational methods that are tailored for SMS long reads. First, we present lordFAST, a fast and sensitive tool for mapping noisy long reads to a reference genome. Mapping sequenced reads to their potential genomic origin is the first fundamental step for many computational biology tasks. As an example, in this thesis, we show the success of lordFAST to be employed in structural variation discovery. Next, we present the second tool, CoLoRMap, which tackles the high level of base-level errors in SMS long reads by providing a means to correct them using a complementary set of NGS short reads. This integrative use of SMS and NGS data is known as hybrid technique. Finally, we introduce HASLR, an ultra-fast hybrid assembler that uses reads generated by both technologies to efficiently generate accurate genome assemblies. We demonstrate that HASLR is not only the fastest assembler but also the one with the lowest number of misassemblies on all the samples compared to other tested assemblers. Furthermore, the generated assemblies in terms of contiguity and accuracy are on par with the other tools on most of the samples.


Computational Methods for Understanding Genetic Variations from Next Generation Sequencing Data

Computational Methods for Understanding Genetic Variations from Next Generation Sequencing Data
Author: Soyeon Ahn (Ph. D.)
Publisher:
Total Pages: 246
Release: 2018
Genre:
ISBN:

Download Computational Methods for Understanding Genetic Variations from Next Generation Sequencing Data Book in PDF, ePub and Kindle

Studies of human genetic variation reveal critical information about genetic and complex diseases such as cancer, diabetes and heart disease, ultimately leading towards improvements in health and quality of life. Moreover, understanding genetic variations in viral population is of utmost importance to virologists and helps in search for vaccines. Next-generation sequencing technology is capable of acquiring massive amounts of data that can provide insight into the structure of diverse sets of genomic sequences. However, reconstructing heterogeneous sequences is computationally challenging due to the large dimension of the problem and limitations of the sequencing technology.This dissertation is focused on algorithms and analysis for two problems in which we seek to characterize genetic variations: (1) haplotype reconstruction for a single individual, so-called single individual haplotyping (SIH) or haplotype assembly problem, and (2) reconstruction of viral population, the so-called quasispecies reconstruction (QSR) problem. For the SIH problem, we have developed a method that relies on a probabilistic model of the data and employs the sequential Monte Carlo (SMC) algorithm to jointly determine type of variation (i.e., perform genotype calling) and assemble haplotypes. For the QSR problem, we have developed two algorithms. The first algorithm combines agglomerative hierarchical clustering and Bayesian inference to reconstruct quasispecies characterized by low diversity. The second algorithm utilizes tensor factorization framework with successive data removal to reconstruct quasispecies characterized by highly uneven frequencies of its components. Both algorithms outperform existing methods in both benchmarking tests and real data.


Computational Methods for Solving Next Generation Sequencing Challenges

Computational Methods for Solving Next Generation Sequencing Challenges
Author: Tamer Ali Aldwairi
Publisher:
Total Pages: 89
Release: 2014
Genre:
ISBN:

Download Computational Methods for Solving Next Generation Sequencing Challenges Book in PDF, ePub and Kindle

In this study we build solutions to three common challenges in the fields of bioinformatics through utilizing statistical methods and developing computational approaches. First, we address a common problem in genome wide association studies, which is linking genotype features within organisms of the same species to their phenotype characteristics. We specifically studied FHA domain genes in Arabidopsis thaliana distributed within Eurasian regions by clustering those plants that share similar genotype characteristics and comparing that to the regions from which they were taken. Second, we also developed a tool for calculating transposable element density within different regions of a genome. The tool is built to utilize the information provided by other transposable element annotation tools and to provide the user with a number of options for calculating the density for various genomic elements such as genes, piRNA and miRNA or for the whole genome. It also provides a detailed calculation of densities for each family and sub-family of the transposable elements. Finally, we address the problem of mapping multi reads in the genome and their effects on gene expression. To accomplish this, we implemented methods to determine the statistical significance of expression values within the genes utilizing both a unique and multi-read weighting scheme. We believe this approach provides a much more accurate measure of gene expression than existing methods such as discarding multi reads completely or assigning them randomly to a set of best assignments, while also providing a better estimation of the proper mapping locations of ambiguous reads. Overall, the solutions we built in these studies provide researchers with tools and approaches that aid in solving some of the common challenges that arise in the analysis of high throughput sequence data.