Computational Methods For Studying Cellular Differentiation Using Single Cell Rna Sequencing PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Methods For Studying Cellular Differentiation Using Single Cell Rna Sequencing PDF full book. Access full book title Computational Methods For Studying Cellular Differentiation Using Single Cell Rna Sequencing.

Computational Methods for Studying Cellular Differentiation Using Single-cell RNA-sequencing

Computational Methods for Studying Cellular Differentiation Using Single-cell RNA-sequencing
Author: Hui Ting Grace Yeo
Publisher:
Total Pages: 176
Release: 2020
Genre:
ISBN:

Download Computational Methods for Studying Cellular Differentiation Using Single-cell RNA-sequencing Book in PDF, ePub and Kindle

Single-cell RNA-sequencing (scRNA-seq) enables transcriptome-wide measurements of single cells at scale. As scRNA-seq datasets grow in complexity and size, more complex computational methods are required to distill raw data into biological insight. In this thesis, we introduce computational methods that enable analysis of novel scRNA-seq perturbational assays. We also develop computational models that seek to move beyond simple observations of cell states toward more complex models of underlying biological processes. In particular, we focus on cellular differentiation, which is the process by which cells acquire some specific form or function. First, we introduce barcodelet scRNA-seq (barRNA-seq), an assay which tags individual cells with RNA ‘barcodelets’ to identify them based on the treatments they receive. We apply barRNA-seq to study the effects of the combinatorial modulation of signaling pathways during early mESC differentiation toward germ layer and mesodermal fates. Using a data-driven analysis framework, we identify combinatorial signaling perturbations that drive cells toward specific fates. Second, we describe poly-adenine CRISPR gRNA-based scRNA-seq (pAC-seq), a method that enables the direct observation of guide RNAs (gRNAs) in scRNA-seq. We apply it to assess the phenotypic consequences of CRISPR/Cas9-based alterations of gene cis-regulatory regions. We find that power to detect transcriptomic effects depend on factors such as rate of mono/biallelic loss, baseline gene expression, and the number of cells per target gRNA. Third, we propose a generative model for analyzing scRNA-seq containing unwanted sources of variation. Using only weak supervision from a control population, we show that the model enables removal of nuisance effects from the learned representation without prior knowledge of the confounding factors. Finally, we develop a generative modeling framework that learns an underlying differentiation landscape from population-level time-series data. We validate the modeling framework on an experimental lineage tracing dataset, and show that it is able to recover the expected effects of known modulators of cell fate in hematopoiesis.


Computational Methods for Single-Cell Data Analysis

Computational Methods for Single-Cell Data Analysis
Author: Guo-Cheng Yuan
Publisher: Humana Press
Total Pages: 271
Release: 2019-02-14
Genre: Science
ISBN: 9781493990566

Download Computational Methods for Single-Cell Data Analysis Book in PDF, ePub and Kindle

This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.


Computational Methods for the Analysis of Single-Cell RNA-Seq Data

Computational Methods for the Analysis of Single-Cell RNA-Seq Data
Author: Marmar Moussa
Publisher:
Total Pages:
Release: 2019
Genre: Electronic dissertations
ISBN:

Download Computational Methods for the Analysis of Single-Cell RNA-Seq Data Book in PDF, ePub and Kindle

Single cell transcriptional profiling is critical for understanding cellular heterogeneity and identification of novel cell types and for studying growth and development of tissues and tumors. Leveraging recent advances in single cell RNA sequencing (scRNA-Seq) technology requires novel methods that are robust to high levels of technical and biological noise and scale to datasets of millions of cells. In this work, we address several challenges in the analysis work-flow of scRNA-Seq data: First, we propose novel computational approaches for unsupervised clustering of scRNA-Seq data based on Term Frequency - Inverse Document Frequency (TF-IDF) transformation that has been successfully used in text analysis. Here, we present empirical experimental results showing that TF-IDF methods consistently outperform commonly used scRNA-Seq clustering approaches. Second, we study the so called 'drop-out' effect that is considered one of the most notable challenges in scRNA-Seq analysis, where only a fraction of the transcriptome of each cell is captured. The random nature of drop-outs, however, makes it possible to consider imputation methods as means of correcting for drop-outs. In this part we study existing scRNA-Seq imputation methods and propose a novel iterative imputation approach based on efficiently computing highly similar cells. We then present results of a comprehensive assessment of existing and proposed methods on real scRNA-Seq datasets with varying per cell sequencing depth. Third, we present a computational method for assigning and/or ordering cells based on their cell-cycle stages from scRNA-Seq. And finally, we present a web-based interactive computational work-flow for analysis and visualization of scRNA-seq data.


Computational Stem Cell Biology

Computational Stem Cell Biology
Author: Patrick Cahan
Publisher: Humana
Total Pages: 0
Release: 2019-05-07
Genre: Science
ISBN: 9781493992232

Download Computational Stem Cell Biology Book in PDF, ePub and Kindle

This volume details methods and protocols to further the study of stem cells within the computational stem cell biology (CSCB) field. Chapters are divided into four sections covering the theory and practice of modeling of stem cell behavior, analyzing single cell genome-scale measurements, reconstructing gene regulatory networks, and metabolomics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Stem Cell Biology: Methods and Protocols will be an invaluable guide to researchers as they explore stem cells from the perspective of computational biology.


The Mouse Nervous System

The Mouse Nervous System
Author: Charles Watson
Publisher: Academic Press
Total Pages: 815
Release: 2011-11-28
Genre: Science
ISBN: 0123694973

Download The Mouse Nervous System Book in PDF, ePub and Kindle

The Mouse Nervous System provides a comprehensive account of the central nervous system of the mouse. The book is aimed at molecular biologists who need a book that introduces them to the anatomy of the mouse brain and spinal cord, but also takes them into the relevant details of development and organization of the area they have chosen to study. The Mouse Nervous System offers a wealth of new information for experienced anatomists who work on mice. The book serves as a valuable resource for researchers and graduate students in neuroscience. Systematic consideration of the anatomy and connections of all regions of the brain and spinal cord by the authors of the most cited rodent brain atlases A major section (12 chapters) on functional systems related to motor control, sensation, and behavioral and emotional states A detailed analysis of gene expression during development of the forebrain by Luis Puelles, the leading researcher in this area Full coverage of the role of gene expression during development and the new field of genetic neuroanatomy using site-specific recombinases Examples of the use of mouse models in the study of neurological illness


Computational Methods for Transcriptome-based Cellular Phenotyping

Computational Methods for Transcriptome-based Cellular Phenotyping
Author: Matthew Nathan Bernstein
Publisher:
Total Pages: 160
Release: 2019
Genre:
ISBN:

Download Computational Methods for Transcriptome-based Cellular Phenotyping Book in PDF, ePub and Kindle

Although the basic chemical mechanisms of cellular biology are now well-known, we are still a long way from understanding how phenotypes emerge from these basic mechanisms. Within the last decade, RNA-sequencing (RNA-seq) has become a ubiquitous technology for measuring the transcriptome, which provides a snapshot of gene expression across the entire genome. An improvement in our ability to predict how phenotypes emerge from the complex patterns of gene expression, a task we refer to as transcriptome-based cellular phenotyping (TBCP), would lead to considerable medical and technological advancements. Machine learning promises to be an apt approach for TBCP due to its ability to overcome noise inherent in RNA-seq data and because it does not require a priori knowledge regarding the rules and patterns that lead from gene expression to phenotype. Furthermore, there exist large, public databases of RNA-seq data that promise to be a valuable source of training data for developing machine learning algorithms to perform TBCP. Unfortunately, this opportunity is impeded by a number of challenges inherent in these databases including poorly structured metadata and data heterogeneity. In this thesis, I present three projects that push the state-of-the-art in the ability to leverage the trove of publicly available gene expression data for TBCP. In the first project, we address the problem of poorly structured metadata that exist in public genomics databases. We specifically focus on the Sequence Read Archive (SRA), which is the premiere repository of raw RNA-seq data curated by the National Institutes of Health; however, our work generalizes to other databases. Existing approaches treat metadata normalization as a named entity recognition problem where the goal is to tag metadata with terms from controlled vocabularies when that term is mentioned in the metadata. We reframe this problem as an inference task, in which we tag the metadata with only those terms that describe the underlying biology of the described sample rather than with all mentioned terms. By doing so, we achieve much higher precision than that achieved by existing methods, and maintain a competitive recall. In the second project, we leverage the normalized metadata produced by the first project in order to train predictive models of phenotype from RNA-seq derived gene expression data. We specifically focus on the cell type prediction task: given an RNA-seq sample, we wish to predict the cell type from which the sample was derived. Cell type prediction is an important step in many transcriptomic analyses, including that of annotating cell types in single-cell RNA-seq datasets. This work represents the first effort towards a cell type prediction task that utilizes the full potential of publicly available RNA-seq data. Finally, in the third project, we build on the second project in order to address the task of cell type prediction on sparse single-cell RNA-seq data (scRNA-seq) produced by novel droplet-based technologies. These droplet-based scRNA-seq technologies are enabling the sequencing of higher numbers of cells at the cost of a lower read-depth per cell. Such low read-depths result in fewer genes with detected expression per cell. We explore the effects of applying cell type classifiers trained on dense, bulk RNA-seq data to sparse scRNA-seq data and propose a novel probabilistic generative model for adapting the bulk-trained classifiers to sparse input data.


Introduction to Single Cell Omics

Introduction to Single Cell Omics
Author: Xinghua Pan
Publisher: Frontiers Media SA
Total Pages: 129
Release: 2019-09-19
Genre:
ISBN: 2889459209

Download Introduction to Single Cell Omics Book in PDF, ePub and Kindle

Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.


Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis
Author: John Shawe-Taylor
Publisher: Cambridge University Press
Total Pages: 520
Release: 2004-06-28
Genre: Computers
ISBN: 9780521813976

Download Kernel Methods for Pattern Analysis Book in PDF, ePub and Kindle

Publisher Description


Handbook of Statistical Genomics

Handbook of Statistical Genomics
Author: David J. Balding
Publisher: John Wiley & Sons
Total Pages: 1828
Release: 2019-07-09
Genre: Science
ISBN: 1119429250

Download Handbook of Statistical Genomics Book in PDF, ePub and Kindle

A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.


Statistical Simulation and Analysis of Single-cell RNA-seq Data

Statistical Simulation and Analysis of Single-cell RNA-seq Data
Author: Tianyi Sun
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Statistical Simulation and Analysis of Single-cell RNA-seq Data Book in PDF, ePub and Kindle

The recent development of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies by revealing the genome-wide gene expression levels within individual cells. In contrast to bulk RNA sequencing, scRNA-seq technology captures cell-specific transcriptome landscapes, which can reveal crucial information about cell-to-cell heterogeneity across different tissues, organs, and systems and enable the discovery of novel cell types and new transient cell states. According to search results from PubMed, from 2009-2023, over 5,000 published studies have generated datasets using this technology. Such large volumes of data call for high-quality statistical methods for their analysis. In the three projects of this dissertation, I have explored and developed statistical methods to model the marginal and joint gene expression distributions and determine the latent structure type for scRNA-seq data. In all three projects, synthetic data simulation plays a crucial role. My first project focuses on the exploration of the Beta-Poisson hierarchical model for the marginal gene expression distribution of scRNA-seq data. This model is a simplified mechanistic model with biological interpretations. Through data simulation, I demonstrate three typical behaviors of this model under different parameter combinations, one of which can be interpreted as one source of the sparsity and zero inflation that is often observed in scRNA-seq datasets. Further, I discuss parameter estimation methods of this model and its other applications in the analysis of scRNA-seq data. My second project focuses on the development of a statistical simulator, scDesign2, to generate realistic synthetic scRNA-seq data. Although dozens of simulators have been developed before, they lack the capacity to simultaneously achieve the following three goals: preserving genes, capturing gene correlations, and generating any number of cells with varying sequencing depths. To fill in this gap, scDesign2 is developed as a transparent simulator that achieves all three goals and generates high-fidelity synthetic data for multiple scRNA-seq protocols and other single-cell gene expression count-based technologies. Compared with existing simulators, scDesign2 is advantageous in its transparent use of probabilistic models and is unique in its ability to capture gene correlations via copula. We verify that scDesign2 generates more realistic synthetic data for four scRNA-seq protocols (10x Genomics, CEL-Seq2, Fluidigm C1, and Smart-Seq2) and two single-cell spatial transcriptomics protocols (MERFISH and pciSeq) than existing simulators do. Under two typical computational tasks, cell clustering and rare cell type detection, we demonstrate that scDesign2 provides informative guidance on deciding the optimal sequencing depth and cell number in single-cell RNA-seq experimental design, and that scDesign2 can effectively benchmark computational methods under varying sequencing depths and cell numbers. With these advantages, scDesign2 is a powerful tool for single-cell researchers to design experiments, develop computational methods, and choose appropriate methods for specific data analysis needs. My third project focuses on deciding latent structure types for scRNA-seq datasets. Clustering and trajectory inference are two important data analysis tasks that can be performed for scRNA-seq datasets and will lead to different interpretations. However, as of now, there is no principled way to tell which one of these two types of analysis results is more suitable to describe a given dataset. In this project, we propose two computational approaches that aim to distinguish cluster-type vs. trajectory-type scRNA-seq datasets. The first approach is based on building a classifier using eigenvalue features of the gene expression covariance matrix, drawing inspiration from random matrix theory (RMT). The second approach is based on comparing the similarity of real data and simulated data generated by assuming the cell latent structure as clusters or a trajectory. While both approaches have limitations, we show that the second approach gives more promising results and has room for further improvements.