Computational Methods For Linear Integral Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Methods For Linear Integral Equations PDF full book. Access full book title Computational Methods For Linear Integral Equations.

Computational Methods for Linear Integral Equations

Computational Methods for Linear Integral Equations
Author: Prem Kythe
Publisher: Springer Science & Business Media
Total Pages: 525
Release: 2011-06-28
Genre: Mathematics
ISBN: 1461201012

Download Computational Methods for Linear Integral Equations Book in PDF, ePub and Kindle

This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.


Computational Methods for Integral Equations

Computational Methods for Integral Equations
Author: L. M. Delves
Publisher: CUP Archive
Total Pages: 392
Release: 1985
Genre: Mathematics
ISBN: 9780521357968

Download Computational Methods for Integral Equations Book in PDF, ePub and Kindle

This textbook provides a readable account of techniques for numerical solutions.


Numerical Solution of Integral Equations

Numerical Solution of Integral Equations
Author: Michael A. Golberg
Publisher: Springer Science & Business Media
Total Pages: 428
Release: 2013-11-11
Genre: Mathematics
ISBN: 1489925937

Download Numerical Solution of Integral Equations Book in PDF, ePub and Kindle

In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.


Linear and Nonlinear Integral Equations

Linear and Nonlinear Integral Equations
Author: Abdul-Majid Wazwaz
Publisher: Springer Science & Business Media
Total Pages: 639
Release: 2011-11-24
Genre: Mathematics
ISBN: 3642214495

Download Linear and Nonlinear Integral Equations Book in PDF, ePub and Kindle

Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.


Mathematical and Computational Methods for Modelling, Approximation and Simulation

Mathematical and Computational Methods for Modelling, Approximation and Simulation
Author: Domingo Barrera
Publisher: Springer Nature
Total Pages: 261
Release: 2022-05-08
Genre: Mathematics
ISBN: 3030943399

Download Mathematical and Computational Methods for Modelling, Approximation and Simulation Book in PDF, ePub and Kindle

This book contains plenary lectures given at the International Conference on Mathematical and Computational Modeling, Approximation and Simulation, dealing with three very different problems: reduction of Runge and Gibbs phenomena, difficulties arising when studying models that depend on the highly nonlinear behaviour of a system of PDEs, and data fitting with truncated hierarchical B-splines for the adaptive reconstruction of industrial models. The book includes nine contributions, mostly related to quasi-interpolation. This is a topic that continues to register a high level of interest, both for those working in the field of approximation theory and for those interested in its use in a practical context. Two chapters address the construction of quasi-interpolants, and three others focus on the use of quasi-interpolation in solving integral equations. The remaining four concern a problem related to the heat diffusion equation, new results on the notion of convexity in probabilistic metric spaces (which are applied to the study of the existence and uniqueness of the solution of a Volterra equation), the use of smoothing splines to address an economic problem and, finally, the analysis of poverty measures, which is a topic of increased interest to society. The book is addressed to researchers interested in Applied Mathematics, with particular reference to the aforementioned topics.


The Numerical Solution of Integral Equations of the Second Kind

The Numerical Solution of Integral Equations of the Second Kind
Author: Kendall E. Atkinson
Publisher: Cambridge University Press
Total Pages: 572
Release: 1997-06-28
Genre: Mathematics
ISBN: 0521583918

Download The Numerical Solution of Integral Equations of the Second Kind Book in PDF, ePub and Kindle

This book provides an extensive introduction to the numerical solution of a large class of integral equations.


Multiscale Methods for Fredholm Integral Equations

Multiscale Methods for Fredholm Integral Equations
Author: Zhongying Chen
Publisher: Cambridge University Press
Total Pages: 551
Release: 2015-07-16
Genre: Mathematics
ISBN: 1316381307

Download Multiscale Methods for Fredholm Integral Equations Book in PDF, ePub and Kindle

The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.


Integral Equation Methods for Electromagnetic and Elastic Waves

Integral Equation Methods for Electromagnetic and Elastic Waves
Author: Weng Chew
Publisher: Springer Nature
Total Pages: 241
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031017072

Download Integral Equation Methods for Electromagnetic and Elastic Waves Book in PDF, ePub and Kindle

Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms