Computational Lithography PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Lithography PDF full book. Access full book title Computational Lithography.

Computational Lithography

Computational Lithography
Author: Xu Ma
Publisher: John Wiley & Sons
Total Pages: 225
Release: 2011-01-06
Genre: Technology & Engineering
ISBN: 111804357X

Download Computational Lithography Book in PDF, ePub and Kindle

A Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers and practitioners in these fields.


Microlithography

Microlithography
Author: Bruce W. Smith
Publisher: CRC Press
Total Pages: 770
Release: 2020-05-01
Genre: Technology & Engineering
ISBN: 1351643444

Download Microlithography Book in PDF, ePub and Kindle

The completely revised Third Edition to the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from fundamental principles to advanced topics of nanoscale lithography. The book is divided into chapters covering all important aspects related to the imaging, materials, and processes that have been necessary to drive semiconductor lithography toward nanometer-scale generations. Renowned experts from the world’s leading academic and industrial organizations have provided in-depth coverage of the technologies involved in optical, deep-ultraviolet (DUV), immersion, multiple patterning, extreme ultraviolet (EUV), maskless, nanoimprint, and directed self-assembly lithography, together with comprehensive descriptions of the advanced materials and processes involved. New in the Third Edition In addition to the full revision of existing chapters, this new Third Edition features coverage of the technologies that have emerged over the past several years, including multiple patterning lithography, design for manufacturing, design process technology co-optimization, maskless lithography, and directed self-assembly. New advances in lithography modeling are covered as well as fully updated information detailing the new technologies, systems, materials, and processes for optical UV, DUV, immersion, and EUV lithography. The Third Edition of Microlithography: Science and Technology authoritatively covers the science and engineering involved in the latest generations of microlithography and looks ahead to the future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current technology, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to better understand the complex world of microlithography science and technology.


Fundamental Principles of Optical Lithography

Fundamental Principles of Optical Lithography
Author: Chris Mack
Publisher: John Wiley & Sons
Total Pages: 503
Release: 2011-08-10
Genre: Technology & Engineering
ISBN: 1119965071

Download Fundamental Principles of Optical Lithography Book in PDF, ePub and Kindle

The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting http://www.lithoguru.com/textbook/index.html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB®, to accompany the textbook. You can also contact the author and find help for instructors.


Advances in FDTD Computational Electrodynamics

Advances in FDTD Computational Electrodynamics
Author: Allen Taflove
Publisher: Artech House
Total Pages: 640
Release: 2013
Genre: Science
ISBN: 1608071707

Download Advances in FDTD Computational Electrodynamics Book in PDF, ePub and Kindle

Advances in photonics and nanotechnology have the potential to revolutionize humanitys ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwells equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwells equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.


Handbook of Integrated Circuit Industry

Handbook of Integrated Circuit Industry
Author: Yangyuan Wang
Publisher: Springer Nature
Total Pages: 2006
Release: 2023-12-29
Genre: Technology & Engineering
ISBN: 9819928362

Download Handbook of Integrated Circuit Industry Book in PDF, ePub and Kindle

Written by hundreds experts who have made contributions to both enterprise and academics research, these excellent reference books provide all necessary knowledge of the whole industrial chain of integrated circuits, and cover topics related to the technology evolution trends, fabrication, applications, new materials, equipment, economy, investment, and industrial developments of integrated circuits. Especially, the coverage is broad in scope and deep enough for all kind of readers being interested in integrated circuit industry. Remarkable data collection, update marketing evaluation, enough working knowledge of integrated circuit fabrication, clear and accessible category of integrated circuit products, and good equipment insight explanation, etc. can make general readers build up a clear overview about the whole integrated circuit industry. This encyclopedia is designed as a reference book for scientists and engineers actively involved in integrated circuit research and development field. In addition, this book provides enough guide lines and knowledges to benefit enterprisers being interested in integrated circuit industry.


Computational Imaging Technologies for Optical Lithography Extension

Computational Imaging Technologies for Optical Lithography Extension
Author: Jia Li
Publisher: Open Dissertation Press
Total Pages:
Release: 2017-01-27
Genre:
ISBN: 9781361357828

Download Computational Imaging Technologies for Optical Lithography Extension Book in PDF, ePub and Kindle

This dissertation, "Computational Imaging Technologies for Optical Lithography Extension" by Jia, Li, 李佳, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: With the development and production of integrated circuits at the 22nm node, optical lithography faces increasing challenges to keep up with the specifications on its performance along various metrics, such as pattern fidelity and process window. The past few years saw the emergence of source mask optimization (SMO) as an important technique in computational lithography, which allows lithographers to rise to the challenges by exploiting a larger design space on both mask and illumination configuration, and integrates with methods such as inverse imaging. Yet, many methods that are used to tackle SMO problem arising in the inverse imaging involve heavy computation and slow convergence, making the technique unappealing for full-chip simulations or large circuits. Therefore, the purpose of this research is to take advantage of computational imaging technologies to solve source and mask design problems, extending the lifetime of optical lithography. The computational burden results in part from identical optimization over the whole mask pattern, consequently, we propose a weighted SMO scheme which applies different degrees of correction in the corresponding regions so that the optimal solutions are reached with fewer iterations. Additionally, undesirably long time is also attributed to the algorithm adopted to solve SMO problem. A fast algorithm based on augmented Lagrangian methods is therefore developed, which use the quasi-Newton method to accelerate convergence, thereby shortening the overall execution time. However, as semiconductor lithography is pushed to even smaller dimensions, mask topography effects have to be taken into account for a more accurate solution of SMO. At this stage, intensive computation is spent mainly in rigorous 3D mask modeling and simulations. To address this issue, we devise an optimization framework incorporating pupil aberrations into SMO procedure, which is performed based on the thin mask model so as to ensure a faster speed. We apply the above approaches to various mask geometries with different critical dimensions. Compared to conventional SMO, simulation results show that the proposed methods lead to better pattern fidelity and larger process window, especially in rigorous calculations. This demonstrates that the source and mask design generated through our algorithms are more practical. More importantly, the improved performance is not at the cost of speed. Instead, our methods take the least time to achieve it. This allows the advantages of computational imaging technologies to be worth exploring for further applications in optical lithography. DOI: 10.5353/th_b5328034 Subjects: Image processing - Digital techniques Microlithography


Handbook of Algorithms for Physical Design Automation

Handbook of Algorithms for Physical Design Automation
Author: Charles J. Alpert
Publisher: CRC Press
Total Pages: 1044
Release: 2008-11-12
Genre: Computers
ISBN: 1000654192

Download Handbook of Algorithms for Physical Design Automation Book in PDF, ePub and Kindle

The physical design flow of any project depends upon the size of the design, the technology, the number of designers, the clock frequency, and the time to do the design. As technology advances and design-styles change, physical design flows are constantly reinvented as traditional phases are removed and new ones are added to accommodate changes in


Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology

Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology
Author: Luciano Lavagno
Publisher: CRC Press
Total Pages: 893
Release: 2017-02-03
Genre: Technology & Engineering
ISBN: 1351831003

Download Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology Book in PDF, ePub and Kindle

The second of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology thoroughly examines real-time logic (RTL) to GDSII (a file format used to transfer data of semiconductor physical layout) design flow, analog/mixed signal design, physical verification, and technology computer-aided design (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability (DFM) at the nanoscale, power supply network design and analysis, design modeling, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on 3D circuit integration and clock design Offering improved depth and modernity, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.