Computational Granular Dynamics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Granular Dynamics PDF full book. Access full book title Computational Granular Dynamics.

Computational Granular Dynamics

Computational Granular Dynamics
Author: Thorsten Pöschel
Publisher: Springer Science & Business Media
Total Pages: 324
Release: 2005-11-04
Genre: Science
ISBN: 354027720X

Download Computational Granular Dynamics Book in PDF, ePub and Kindle

Computer simulations not only belong to the most important methods for the theoretical investigation of granular materials, but provide the tools that have enabled much of the expanding research by physicists and engineers. The present book is intended to serve as an introduction to the application of numerical methods to systems of granular particles. Accordingly emphasis is on a general understanding of the subject rather than on the presentation of latest advances in numerical algorithms. Although a basic knowledge of C++ is needed for the understanding of the numerical methods and algorithms in the book, it avoids usage of elegant but complicated algorithms to remain accessible for those who prefer to use a different programming language. While the book focuses more on models than on the physics of granular material, many applications to real systems are presented.


Computational Granular Mechanics and Its Engineering Applications

Computational Granular Mechanics and Its Engineering Applications
Author: Shunying Ji
Publisher: Springer Nature
Total Pages: 399
Release: 2020-03-18
Genre: Technology & Engineering
ISBN: 9811533040

Download Computational Granular Mechanics and Its Engineering Applications Book in PDF, ePub and Kindle

This book systematically introduces readers to computational granular mechanics and its relative engineering applications. Part I describes the fundamentals, such as the generation of irregular particle shapes, contact models, macro-micro theory, DEM-FEM coupling, and solid-fluid coupling of granular materials. It also discusses the theory behind various numerical methods developed in recent years. Further, it provides the GPU-based parallel algorithm to guide the programming of DEM and examines commercial and open-source codes and software for the analysis of granular materials. Part II focuses on engineering applications, including the latest advances in sea-ice engineering, railway ballast dynamics, and lunar landers. It also presents a rational method of parameter calibration and thorough analyses of DEM simulations, which illustrate the capabilities of DEM. The computational mechanics method for granular materials can be applied widely in various engineering fields, such as rock and soil mechanics, ocean engineering and chemical process engineering.


Granular Dynamics, Contact Mechanics and Particle System Simulations

Granular Dynamics, Contact Mechanics and Particle System Simulations
Author: Colin Thornton
Publisher: Springer
Total Pages: 202
Release: 2015-09-03
Genre: Science
ISBN: 3319187112

Download Granular Dynamics, Contact Mechanics and Particle System Simulations Book in PDF, ePub and Kindle

This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact with a wall. This is discussed using the output obtained from the contact force models described earlier, which are compared for elastic and inelastic collisions. In addition, further insight is provided for the impact of adhesive particles. The author then moves on to provide the results of selected DEM applications to agglomerate impacts, fluidised beds and quasi-static deformation, demonstrating that the DEM technique can be used (i) to mimic experiments, (ii) explore parameter sweeps, including limiting values, or (iii) identify new, previously unknown, phenomena at the microscale. In the DEM applications the emphasis is on discovering new information that enhances our rational understanding of particle systems, which may be more significant than developing a new continuum model that encompasses all microstructural aspects, which would most likely prove too complicated for practical implementation. The book will be of interest to academic and industrial researchers working in particle technology/process engineering and geomechanics, both experimentalists and theoreticians.


Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations

Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations
Author: Kolumban Hutter
Publisher: Springer Science & Business Media
Total Pages: 430
Release: 2013-02-26
Genre: Technology & Engineering
ISBN: 3540365656

Download Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations Book in PDF, ePub and Kindle

A "Sonderforschungsbereich" (SFB) is a programme of the "Deutsche For schungsgemeinschaft" to financially support a concentrated research effort of a number of scientists located principally at one University, Research La boratory or a number of these situated in close proximity to one another so that active interaction among individual scientists is easily possible. Such SFB are devoted to a topic, in our case "Deformation and Failure in Metallic and Granular M aterialK' , and financing is based on a peer reviewed proposal for three (now four) years with the intention of several prolongations after evaluation of intermediate progress and continuation reports. An SFB is terminated in general by a formal workshop, in which the state of the art of the achieved results is presented in oral or I and poster communications to which also guests are invited with whom the individual project investigators may have collaborated. Moreover, a research report in book form is produced in which a number of articles from these lectures are selected and collected, which present those research results that withstood a rigorous reviewing pro cess (with generally two or three referees). The theme deformation and failure of materials is presented here in two volumes of the Lecture Notes in Applied and Computational Mechanics by Springer Verlag, and the present volume is devoted to granular and porous continua. The complementary volume (Lecture Notes in Applied and Com putational Mechanics, vol. 10, Eds. K. HUTTER & H.


Granular Materials

Granular Materials
Author: Michael Sakellariou
Publisher: BoD – Books on Demand
Total Pages: 193
Release: 2017-09-06
Genre: Science
ISBN: 9535135058

Download Granular Materials Book in PDF, ePub and Kindle

This volume presents basic notions and fundamental properties of granular materials covering a wide spectrum of granular material mechanics. The granular materials may behave as fluids or solids or both. The grain size may span from microscopic to macroscopic scale. From the wet sand effect, Reynolds inspired in 1885 the notion of granular universe introducing the term "dilatancy." Bak, Tan, and Wisenfeld (1987, 1988) used the sand pile as a representative model of complex systems. In this collection of chapters, granular dynamics, granular flow from dilute to jammed states, dynamics of granular gas in microgravity, particle jetting induced by impulsive loadings, particle migration phenomena in embankment dams, and the grading entropy-based criteria of granular materials and filters are presented.


Computational Fluid Dynamics and the Theory of Fluidization

Computational Fluid Dynamics and the Theory of Fluidization
Author: Huilin Lu
Publisher: Springer Nature
Total Pages: 198
Release: 2021-05-03
Genre: Technology & Engineering
ISBN: 9811615586

Download Computational Fluid Dynamics and the Theory of Fluidization Book in PDF, ePub and Kindle

This book is for engineers and students to solve issues concerning the fluidized bed systems. It presents an analysis that focuses directly on the problem of predicting the fluid dynamic behavior which empirical data is limited or unavailable. The second objective is to provide a treatment of computational fluidization dynamics that is readily accessible to the non-specialist. The approach adopted in this book, starting with the formulation of predictive expressions for the basic conservation equations for mass and momentum using kinetic theory of granular flow. The analyses presented in this book represent a body of simulations and experiments research that has appeared in numerous publications over the last 20 years. This material helps to form the basis for university course modules in engineering and applied science at undergraduate and graduate level, as well as focused, post-experienced courses for the process, and allied industries.


Mechanics of Granular Matter

Mechanics of Granular Matter
Author: Qicheng Sun
Publisher: WIT Press
Total Pages: 209
Release: 2013
Genre: Technology & Engineering
ISBN: 1845646444

Download Mechanics of Granular Matter Book in PDF, ePub and Kindle

Focussing on the basic mechanics and underlying physics of granular material, Mechanics of Granular Matter starts with an introduction to contact mechanics of individual particles before moving on to a discussion of the structure of force chain networks and the influence on bulk mechanical properties of granular solids and granular flows. Furthermore, a preliminary multi scale framework is proposed for the nonlinear mechanics and strain localization in granular materials.


Computational Mechanics of Arbitrarily Shaped Granular Materials

Computational Mechanics of Arbitrarily Shaped Granular Materials
Author: Siqiang Wang
Publisher: Springer Nature
Total Pages: 240
Release: 2024-01-17
Genre: Technology & Engineering
ISBN: 9819999278

Download Computational Mechanics of Arbitrarily Shaped Granular Materials Book in PDF, ePub and Kindle

This book focuses on discrete element methods for arbitrarily shaped granular materials, including super-quadric models, spherical harmonic functions and level set methods, and numerical analysis of the flow characteristics of non-spherical granular materials. This book is used as a reference book for scientific researchers engaged in dynamic analysis of granular materials and optimal design of equipment structures in the fields of engineering mechanics, applied physics, mechanical engineering, and chemical engineering, as well as for graduate students or senior undergraduates of related majors in institutions of higher education.


Harmonizing Matter and Function

Harmonizing Matter and Function
Author: Atoosa Parsa
Publisher:
Total Pages: 0
Release: 2024
Genre: Evolutionary computation
ISBN:

Download Harmonizing Matter and Function Book in PDF, ePub and Kindle

Achieving higher gains in the density and power consumption of digital electronic processors is becoming progressively challenging due to reaching the limits of miniaturization and integration techniques. Consequently, there is a growing appreciation of unconventional computing paradigms that dismiss classic assumptions on what computation entails and leverage the intrinsic dynamics of alternate physical substrates to create special-purpose computing devices. Metamaterials hold significant promise for constructing the next generation of machines, wherein computation and function are no longer decoupled but combined in a mechanical computing system that interacts with and adapts to its environment.Granular materials are particularly intriguing for advancing this vision because their discrete nature allows for highly tunable nonlinear dynamics that can be shaped by altering material properties, geometry, and configuration of grains. However, the absence of general mechanistic theories of computation and the daunting complexity of macro-micro relations in granular materials impede the discovery and realization of computational granular machines. This thesis is focused on devising methods that can expand the design space of such machines beyond human intuition and provide the opportunity to systematically traverse their high-dimensional parameter space to find materials with the desired functionalities. We begin by exploring the dynamics of the granular materials and present a data-driven analysis pipeline based on the modern Koopman theory. Next, we delve into their application in the unconventional computing paradigm and establish a framework for wave-based computing in harmonically driven granular materials. Following that, we develop an optimization pipeline using Evolutionary Algorithms and utilize it in a series of experiments to demonstrate the computational capabilities of disordered granular configurations. The results indicate that granular materials have strongly nonlinear dynamics that can be exploited to polycompute universal logic functions. Further, we develop a gradient-based optimization pipeline and show that it discovers more efficient configurations with less computational effort. Lastly, the physical realization of computational granular materials is discussed, and some preliminary outcomes are presented. Overall, the results presented in this thesis could serve as a universal tool for optimizing granular assemblies with desired temporal and spatial responses and offer insights into design principles that can guide the realization of increasingly multifunctional granular machines.


Handbook of Granular Materials

Handbook of Granular Materials
Author: Scott V. Franklin
Publisher: CRC Press
Total Pages: 509
Release: 2016-03-09
Genre: Science
ISBN: 146650997X

Download Handbook of Granular Materials Book in PDF, ePub and Kindle

Granular systems arise in a variety of geological and industrial settings, from landslides, avalanches, and erosion to agricultural grains and pharmaceutical powders. Understanding the underlying physics that governs their behavior is the key to developing effective handling and transport mechanisms as well as appropriate environmental policies.Han