Computational Fluid Dynamics Modeling Of Inter Circulating Fluidized Bed PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Fluid Dynamics Modeling Of Inter Circulating Fluidized Bed PDF full book. Access full book title Computational Fluid Dynamics Modeling Of Inter Circulating Fluidized Bed.

Multiphase Flow and Fluidization

Multiphase Flow and Fluidization
Author: Dimitri Gidaspow
Publisher: Elsevier
Total Pages: 489
Release: 2012-12-02
Genre: Science
ISBN: 0080512267

Download Multiphase Flow and Fluidization Book in PDF, ePub and Kindle

Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and introducing the new dependent variable--the volume fraction of the dispersed phase. Exercises at the end of each chapterare provided for further study and lead into applications not covered in the text itself. Treats fluidization as a branch of transport phenomena Demonstrates how to do transient, multidimensional simulation of multiphase processes The first book to apply kinetic theory to flow of particulates Is the only book to discuss numerical stability of multiphase equations and whether or not such equations are well-posed Explains the origin of bubbles and the concept of critical granular flow Presents clearly written exercises at the end of each chapter to facilitate understanding and further study


Computational Fluid Dynamics and the Theory of Fluidization

Computational Fluid Dynamics and the Theory of Fluidization
Author: Huilin Lu
Publisher: Springer Nature
Total Pages: 198
Release: 2021-05-03
Genre: Technology & Engineering
ISBN: 9811615586

Download Computational Fluid Dynamics and the Theory of Fluidization Book in PDF, ePub and Kindle

This book is for engineers and students to solve issues concerning the fluidized bed systems. It presents an analysis that focuses directly on the problem of predicting the fluid dynamic behavior which empirical data is limited or unavailable. The second objective is to provide a treatment of computational fluidization dynamics that is readily accessible to the non-specialist. The approach adopted in this book, starting with the formulation of predictive expressions for the basic conservation equations for mass and momentum using kinetic theory of granular flow. The analyses presented in this book represent a body of simulations and experiments research that has appeared in numerous publications over the last 20 years. This material helps to form the basis for university course modules in engineering and applied science at undergraduate and graduate level, as well as focused, post-experienced courses for the process, and allied industries.


Kinetic Theory of Granular Flows and Multi-scale CFD Modeling for Fluidized Beds

Kinetic Theory of Granular Flows and Multi-scale CFD Modeling for Fluidized Beds
Author: Yujian Sun
Publisher:
Total Pages: 157
Release: 2016
Genre: Electronic dissertations
ISBN:

Download Kinetic Theory of Granular Flows and Multi-scale CFD Modeling for Fluidized Beds Book in PDF, ePub and Kindle

Fluidized beds are widely used in chemical industry for carrying out gas-solids reactions. Their advantages include superior heat transfer, low pressure drop compared to fixed beds, high throughput, and the ability to regenerate or reprocess the spent particles in a separate unit from the main reactor, when operated in a circulating fluidized bed mode. In spite of these desirable features, this type of gas-solids contactors also present challenges in understanding the detailed hydrodynamics, mixing and contacting pattern, as well as their effects on reactions. Design of commercial fluidized beds often requires scale-up from a smaller lab or pilot plant, but the behavior of the different scales must be linked by proper reactor models that take into account the possible changes in hydrodynamics and contacting patterns between the scales. This can be challenging because the prediction and extension of key parameters used in a model, such as axial dispersion number is usually not available, and phenomenological models for these parameters based on science are often missing. To meet these challenges, computational fluid dynamics, or CFD, can be utilized as a tool to extract the needed information by coarse-graining from the detailed hydrodynamics of the multiphase system, thus aiding in more rational design and scale-up of fluidized bed reactors. The CFD models in turn have their own parameters that need phenomenological models, which xii are easier to construct from fundamentals. Two types of simulation methods, i.e. Eulerian-Eulerian and Eulerian-Lagrangian, are investigated in this study. For the Eulerian method (also called two-fluid model, or TFM), in which the discrete solid particles are assumed as a continuous granular phase interpenetrated with the gas, the constitutive models for solids phase stress are needed. In this work, a new set of such models is developed from kinetic theory of granular flows with a new collision model. In this model, both the normal and tangential part of relative velocity between two colliding particles is damped due to inelastic collision, while the traditional model only takes into account the normal part. With this modification, the previously under-estimated dissipation rate of fluctuation energy is increased as expected. The models are implemented in OpenFOAM, an open-source CFD platform, to simulate a fluidized bed. The model improves the prediction of solids volume fraction without extra computational cost. In the Lagrangian or DEM (discrete element method) approach, the effort is motivated by Bhusarapus (2005) pioneering finding using CARPT (computer-aided radioactive particle tracking) that the traditional tracer method for measuring solids residence time distribution (RTD) cannot capture the actual residence time due to inability to distinguish the time that a particle temporarily spends out of the riser after first entry to or before last exit from the riser. By implementing the algorithm developed in this work to record separately the time that each particle actually spends in the riser, Lagrangian simulation is performed for a small circulating fluidized bed in OpenFOAM. The results clearly demonstrate the difference between RTD obtained from simulated traditional tracer method and that from the Lagrangian approach. Other information can be extracted as well such as the first passage time distribution, macromixing index, and interchange coefficient between a core region and an annular region, if using a core-annulus model. The potential capability of this CFD approach is boundless.


Numerical Simulation of Liquid-Solid Circulating Fluidized Beds

Numerical Simulation of Liquid-Solid Circulating Fluidized Beds
Author: Abbas Dadashi
Publisher:
Total Pages: 182
Release: 2014
Genre:
ISBN:

Download Numerical Simulation of Liquid-Solid Circulating Fluidized Beds Book in PDF, ePub and Kindle

Liquid-solid circulating fluidized bed (LSCFB) reactors are obtaining extensive attraction in the extraction process of functional proteins from industrial broth. A typical LSCFB is comprised of a riser, a downcomer, a liquid-solid separator, a top solids-return pipe and a bottom solids-return pipe. In light of the literature review conducted in this research, a detailed modeling of the protein extraction using an LSCFB ion-exchange system requires a microscopic study including hydrodynamic field, mass transfer and kinetics reactions. A computational fluid dynamics (CFD) model was developed to simulate the hydrodynamics of the two phase flow in an LSCFB riser. The model is based on Eulerian-Eulerian (E-E) approach incorporating the kinetic theory of granular flow. The predicted flow characteristics agree well with our earlier experimental data. Furthermore, the model can predict the residence time of both liquid and solid phases in the riser using a pulse technique. A numerical model was developed to predict the protein extraction process using an LSCFB ion exchange system. The model for the riser is an extension of the previous CFD hydrodynamic model for the riser incorporating the kinetics reaction. The model for the downcomer includes a one-dimensional mathematical model using the adsorption kinetics correlations. The numerical predictions were compared favorably with the experimental data from a lab-scale system. The model was used to investigate the effects of operating condition on the protein production rate and the system efficiency. For further study on the hydrodynamics in the downcomer of an LSCFB, the CFD technique was used to simulate the counter-current two phase flow in the downcomer. The model is based on E-E approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superficial liquid velocity in downcomer and solids circulation rate. As results, it is demonstrated that the developed CFD model can be adapted to simulate and control the other applications of the LSCFB, such as wastewater treatment, petroleum and metallurgical industries.