Computational Approaches To Understand The Atomistic Drivers Of Enzyme Catalysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Approaches To Understand The Atomistic Drivers Of Enzyme Catalysis PDF full book. Access full book title Computational Approaches To Understand The Atomistic Drivers Of Enzyme Catalysis.

Computational Approaches to Understand the Atomistic Drivers of Enzyme Catalysis

Computational Approaches to Understand the Atomistic Drivers of Enzyme Catalysis
Author: Natasha Seelam
Publisher:
Total Pages: 213
Release: 2021
Genre:
ISBN:

Download Computational Approaches to Understand the Atomistic Drivers of Enzyme Catalysis Book in PDF, ePub and Kindle

Enzymes readily perform chemical reactions several orders of magnitude faster than their uncatalyzed versions in ambient conditions with high specificity, making them attractive design targets for industrial purposes. Traditionally, enzyme reactivity has been contextualized through transition-state theory (TST), in which catalytic strategies are described by their ability to minimize the activation energy to cross the reaction barrier through a combination of ground-state destabilization (GSD) and transition-state stabilization (TSS). While excellent progress has been made to rationally design enzymes, the complexity of the design space and the highly optimized nature of enzymes make general application of these approaches difficult. This thesis presents a set of computational methods and applications in order to investigate the larger perspective of enzyme-assisted kinetic processes. For the first part of the thesis, we analyzed the energetics and dynamics of proficient catalyst orotidine 5'-monophosphate decarboxylase (OMPDC), an enzyme that catalyzes decarboxylation nearly 17 orders of magnitude more proficiently than the uncatalyzed reaction in aqueous solvent. Potential-of-mean-force (PMF) calculations on wild type (WT) and two catalytically hindered mutants, S127A and V155D (representing TSS and GSD, respectively), characterized the energy barriers associated with decarboxylation as a function of two parameters: the distance between the breaking C–C bond and a proton-transfer coordinate from the nearby side chain of K72, a conserved lysine in the active site. Coupling PMF analyses with transition path sampling (TPS) approaches revealed two distinct decarboxylation strategies: a simultaneous, K72-assisted pathway and a stepwise, relatively K72-independent pathway. Both PMF and TPS rate calculations reasonably reproduced the empirical differences in relative rates between WT and mutant systems, suggesting these approaches can enable in silico inquiry into both pathway and mechanism identification in enzyme kinetics. For the second study, we investigated the electronic determinants of reactivity, using the enzyme ketol-acid reductoisomerase (KARI). KARI catalyzes first a methyl isomerization and then reduction with an active site comprised of several polar residues, two magnesium divalent cations, and NADPH. This study focused on isomerization, which is rate limiting, with two objectives: characterization of chemical mechanism in successful catalytic events (“reactive”) versus failed attempts to cross the barrier ("non-reactive"), and the interplay between atomic positions, electronic descriptors, and reactivity. Natural bonding orbital (NBO) analyses provided detailed electronic description of the dynamics through the reaction and revealed that successful catalytic events crossed the reaction barrier through a 3-center-2-electron (3C) bond, concurrent to isomerization of hydroxyl/carbonyls on the substrate. Interestingly, the non-reactive ensemble adopted a similar electronic pathway as the reactive ensemble, but its members were generally unable to form and sustain the 3C bond. Supervised machine learning classifiers then identified small subsets of geometric and electronic descriptors, “features”, that predicted reactivity; our results indicated that fewer electronic features were able to predict reactivity as effectively as a larger set of geometric features. Of these electronic features, the models selected diverse descriptors representing several facets of the chemical mechanism (charge, breaking–bond order, atomic orbital hybridization states, etc.). We then inquired how geometric features reported on electronic features with classifiers that leveraged pairs of geometric features to predict the relative magnitude of each electronic feature. Our findings indicated that the geometric, pair-feature models predicted electronic structure with comparable performance as cumulative geometric models, suggesting small subsets of features were capable of reporting on electronic descriptors, and that different subsets could be leveraged to describe various aspects of a chemical mechanism. Lastly, we revisited OMPDC in order to learn the key geometric features that distinguished between the simultaneous and stepwise pathways of decarboxylation, aggregating and labeling pathways drawn from WT and mutant systems ensembles. We leveraged classifiers that predicted between reactive pathways by selecting small subsets of structural features from 620 geometric features comprised of atoms from the active site. The classifiers performed comparably, with greater than 80% testing accuracy and AUC, between times starting from in the reactant basin to 30 fs into crossing the reaction barrier. Remarkably, model-selected features reported on chemically meaningful interactions despite no explicit prior knowledge of the mechanism in training. To illustrate this, we focused analyses on two particular features shown to be predictive while in the reactant basin, prior to crossing the barrier: a potential hydrogen-bond between D75*, an aspartate in the active site, and the 2'-hydroxyl of OMP, and electrostatic repulsion through the proximity of a different aspartate, D70, to the leaving group carboxylate of OMP. Analysis between the simultaneous and stepwise ensembles demonstrated that the simultaneous ensemble adopted shorter distances for both features, generally suggesting stronger interactions. Both features were additionally shown to be associated with the ability to distort the planarity of the orotidyl ring, where shorter distances for either feature were correlated with larger degrees of distortion. Taken together, this suggested the simultaneous ensemble was more effective at distorting the ground state structure prior to crossing the reaction barrier.


FEBS 2023 Advanced Course

FEBS 2023 Advanced Course
Author: Federation of European Biochemical Societies. Advanced course. Computational Approaches to Understanding and Engineering Enzyme Catalysis
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN: 9789536076192

Download FEBS 2023 Advanced Course Book in PDF, ePub and Kindle


Simulating Enzyme Reactivity Computational Methods in Enzyme Catalysis

Simulating Enzyme Reactivity Computational Methods in Enzyme Catalysis
Author: John Maclane
Publisher: Createspace Independent Publishing Platform
Total Pages: 446
Release: 2017-06-07
Genre:
ISBN: 9781548041595

Download Simulating Enzyme Reactivity Computational Methods in Enzyme Catalysis Book in PDF, ePub and Kindle

The simulation of enzymatic processes is a well-established field within computational chemistry, as demonstrated by the 2013 Nobel Prize in Chemistry. It has been attracting increasing attention in recent years due to the potential applications in the development of new drugs or new environmental-friendly catalysts. Featuring contributions from renowned authors, including Nobel Laureate Arieh Warshel, this book explores the theories, methodologies and applications in simulations of enzyme reactions. It is the first book offering a comprehensive perspective of the field by examining several different methodological approaches and discussing their applicability and limitations. The book provides the basic knowledge for postgraduate students and researchers in chemistry, biochemistry and biophysics, who want a deeper understanding of complex biological process at the molecular level.


Nanozymes: Next Wave of Artificial Enzymes

Nanozymes: Next Wave of Artificial Enzymes
Author: Xiaoyu Wang
Publisher: Springer
Total Pages: 134
Release: 2016-07-27
Genre: Technology & Engineering
ISBN: 3662530686

Download Nanozymes: Next Wave of Artificial Enzymes Book in PDF, ePub and Kindle

This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.


Dynamics in Enzyme Catalysis

Dynamics in Enzyme Catalysis
Author: Judith Klinman
Publisher: Springer
Total Pages: 217
Release: 2013-09-14
Genre: Science
ISBN: 3642389627

Download Dynamics in Enzyme Catalysis Book in PDF, ePub and Kindle

Christopher M. Cheatum and Amnon Kohen, Relationship of Femtosecond–Picosecond Dynamics to Enzyme-Catalyzed H-Transfer. Cindy Schulenburg and Donald Hilvert, Protein Conformational Disorder and Enzyme Catalysis. A. Joshua Wand, Veronica R. Moorman and Kyle W. Harpole, A Surprising Role for Conformational Entropy in Protein Function. Travis P. Schrank, James O. Wrabl and Vincent J. Hilser, Conformational Heterogeneity Within the LID Domain Mediates Substrate Binding to Escherichia coli Adenylate Kinase: Function Follows Fluctuations. Buyong Ma and Ruth Nussinov, Structured Crowding and Its Effects on Enzyme Catalysis. Michael D. Daily, Haibo Yu, George N. Phillips Jr and Qiang Cui, Allosteric Activation Transitions in Enzymes and Biomolecular Motors: Insights from Atomistic and Coarse-Grained Simulations. Karunesh Arora and Charles L. Brooks III, Multiple Intermediates, Diverse Conformations, and Cooperative Conformational Changes Underlie the Catalytic Hydride Transfer Reaction of Dihydrofolate Reductase. Steven D. Schwartz, Protein Dynamics and the Enzymatic Reaction Coordinate.


Computational Molecular Dynamics: Challenges, Methods, Ideas

Computational Molecular Dynamics: Challenges, Methods, Ideas
Author: Peter Deuflhard
Publisher: Springer Science & Business Media
Total Pages: 500
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642583601

Download Computational Molecular Dynamics: Challenges, Methods, Ideas Book in PDF, ePub and Kindle

On May 21-24, 1997 the Second International Symposium on Algorithms for Macromolecular Modelling was held at the Konrad Zuse Zentrum in Berlin. The event brought together computational scientists in fields like biochemistry, biophysics, physical chemistry, or statistical physics and numerical analysts as well as computer scientists working on the advancement of algorithms, for a total of over 120 participants from 19 countries. In the course of the symposium, the speakers agreed to produce a representative volume that combines survey articles and original papers (all refereed) to give an impression of the present state of the art of Molecular Dynamics. The 29 articles of the book reflect the main topics of the Berlin meeting which were i) Conformational Dynamics, ii) Thermodynamic Modelling, iii) Advanced Time-Stepping Algorithms, iv) Quantum-Classical Simulations and Fast Force Field and v) Fast Force Field Evaluation.


Protein Conformational Dynamics

Protein Conformational Dynamics
Author: Ke-li Han
Publisher: Springer Science & Business Media
Total Pages: 488
Release: 2014-01-20
Genre: Medical
ISBN: 3319029703

Download Protein Conformational Dynamics Book in PDF, ePub and Kindle

This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.


Computational Catalysis

Computational Catalysis
Author: Aravind Asthagiri
Publisher: Royal Society of Chemistry
Total Pages: 277
Release: 2014
Genre: Science
ISBN: 1849734518

Download Computational Catalysis Book in PDF, ePub and Kindle

This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.


Directed Enzyme Evolution: Advances and Applications

Directed Enzyme Evolution: Advances and Applications
Author: Miguel Alcalde
Publisher: Springer
Total Pages: 286
Release: 2017-02-14
Genre: Science
ISBN: 3319504134

Download Directed Enzyme Evolution: Advances and Applications Book in PDF, ePub and Kindle

This book focuses on some of the most significant advances in enzyme engineering that have been achieved through directed evolution and hybrid approaches. On the 25th anniversary of the discovery of directed evolution, this volume is a tribute to the pioneers of this thrilling research field, and at the same time provides a comprehensive overview of current research and the state of the art. Directed molecular evolution has become the most reliable and robust method to tailor enzymes, metabolic pathways or even whole microorganisms with improved traits. By mirroring the Darwinian algorithm of natural selection on a laboratory scale, new biomolecules of invaluable biotechnological interest can now be engineered in a manner that surpasses the boundaries of nature. The volume is divided into two sections, the first of which provides an update on recent successful cases of enzyme ensembles from different areas of the biotechnological spectrum, including tryptophan synthases, unspecific peroxygenases, phytases, therapeutic enzymes, stereoselective enzymes and CO2-fixing enzymes. This section also provides information on the directed evolution of whole cells. The second section of the book summarizes a variety of the most applicable methods for library creation, together with the future trends aimed at bringing together directed evolution and in silico/computational enzyme design and ancestral resurrection.


The Sugar Code

The Sugar Code
Author: Hans-Joachim Gabius
Publisher: John Wiley & Sons
Total Pages: 597
Release: 2013-12-06
Genre: Science
ISBN: 3527644962

Download The Sugar Code Book in PDF, ePub and Kindle

A reader friendly overview of the structure and functional relevance of natural glycosylation and its cognate proteins (lectins), this book is also one of the few books to cover their role in health and disease. Edited by one of the pioneering experts in the field and written by a team of renowned researchers this resource is a perfect introduction for all students in life and medical sciences, biochemistry, chemistry and pharmacy. Website: WWW.WILEY-VCH.DE/HOME/THESUGARCODE