Computational Approaches For Studying Enzyme Mechanism Part B PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Approaches For Studying Enzyme Mechanism Part B PDF full book. Access full book title Computational Approaches For Studying Enzyme Mechanism Part B.

Computational Approaches for Studying Enzyme Mechanism Part B

Computational Approaches for Studying Enzyme Mechanism Part B
Author:
Publisher: Academic Press
Total Pages: 538
Release: 2016-08-03
Genre: Science
ISBN: 0128111089

Download Computational Approaches for Studying Enzyme Mechanism Part B Book in PDF, ePub and Kindle

Computational Approaches for Studying Enzyme Mechanism, Part B is the first of two volumes in the Methods in Enzymology series that focuses on computational approaches for studying enzyme mechanism. The serial achieves the critically acclaimed gold standard of laboratory practices and remains one of the most highly respected publications in the molecular biosciences. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 550 volumes, the series remains a prominent and essential publication for researchers in all fields of the life sciences and biotechnology, including biochemistry, chemical biology, microbiology, synthetic biology, cancer research, genetics, and other fields of study. Focuses on computational approaches for studying enzyme mechanism Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers research methods in intermediate filament associated proteins, and contains sections on such topics as lamin-associated proteins, intermediate filament-associated proteins and plakin, and other cytoskeletal cross-linkers


Computational Approaches for Studying Enzyme Mechanism Part A

Computational Approaches for Studying Enzyme Mechanism Part A
Author:
Publisher: Academic Press
Total Pages: 560
Release: 2016-08-04
Genre: Science
ISBN: 0128053631

Download Computational Approaches for Studying Enzyme Mechanism Part A Book in PDF, ePub and Kindle

Computational Approaches for Studying Enzyme Mechanism Part A, is the first of two volumes in the Methods in Enzymology series, focusses on computational approaches for studying enzyme mechanism. The serial achieves the critically acclaimed gold standard of laboratory practices and remains one of the most highly respected publications in the molecular biosciences. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 550 volumes, the series remains a prominent and essential publication for researchers in all fields of life sciences and biotechnology, including biochemistry, chemical biology, microbiology, synthetic biology, cancer research, and genetics to name a few. Focuses on computational approaches for studying enzyme mechanism Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers research methods in intermediate filament associated proteins, and contains sections on such topics as lamin-associated proteins, intermediate filament-associated proteins and plakin, and other cytoskeletal cross-linkers


Computational Approaches for Studying Enzyme Mechanism

Computational Approaches for Studying Enzyme Mechanism
Author: Gregory Voth
Publisher: Academic Press
Total Pages: 514
Release: 2016-08-18
Genre: Medical
ISBN: 9780128111079

Download Computational Approaches for Studying Enzyme Mechanism Book in PDF, ePub and Kindle

"Computational Approaches for Studying Enzyme Mechanism, Part B" is the first of two volumes in the Methods in Enzymology series that focuses on computational approaches for studying enzyme mechanism. The serial achieves the critically acclaimed gold standard of laboratory practices and remains one of the most highly respected publications in the molecular biosciences. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 550 volumes, the series remains a prominent and essential publication for researchers in all fields of the life sciences and biotechnology, including biochemistry, chemical biology, microbiology, synthetic biology, cancer research, genetics, and other fields of study. Focuses on computational approaches for studying enzyme mechanismContinues the legacy of this premier serial with quality chapters authored by leaders in the field Covers research methods in intermediate filament associated proteins, and contains sections on such topics as lamin-associated proteins, intermediate filament-associated proteins and plakin, and other cytoskeletal cross-linkers


Computational Approaches to Understand the Atomistic Drivers of Enzyme Catalysis

Computational Approaches to Understand the Atomistic Drivers of Enzyme Catalysis
Author: Natasha Seelam
Publisher:
Total Pages: 213
Release: 2021
Genre:
ISBN:

Download Computational Approaches to Understand the Atomistic Drivers of Enzyme Catalysis Book in PDF, ePub and Kindle

Enzymes readily perform chemical reactions several orders of magnitude faster than their uncatalyzed versions in ambient conditions with high specificity, making them attractive design targets for industrial purposes. Traditionally, enzyme reactivity has been contextualized through transition-state theory (TST), in which catalytic strategies are described by their ability to minimize the activation energy to cross the reaction barrier through a combination of ground-state destabilization (GSD) and transition-state stabilization (TSS). While excellent progress has been made to rationally design enzymes, the complexity of the design space and the highly optimized nature of enzymes make general application of these approaches difficult. This thesis presents a set of computational methods and applications in order to investigate the larger perspective of enzyme-assisted kinetic processes. For the first part of the thesis, we analyzed the energetics and dynamics of proficient catalyst orotidine 5'-monophosphate decarboxylase (OMPDC), an enzyme that catalyzes decarboxylation nearly 17 orders of magnitude more proficiently than the uncatalyzed reaction in aqueous solvent. Potential-of-mean-force (PMF) calculations on wild type (WT) and two catalytically hindered mutants, S127A and V155D (representing TSS and GSD, respectively), characterized the energy barriers associated with decarboxylation as a function of two parameters: the distance between the breaking C–C bond and a proton-transfer coordinate from the nearby side chain of K72, a conserved lysine in the active site. Coupling PMF analyses with transition path sampling (TPS) approaches revealed two distinct decarboxylation strategies: a simultaneous, K72-assisted pathway and a stepwise, relatively K72-independent pathway. Both PMF and TPS rate calculations reasonably reproduced the empirical differences in relative rates between WT and mutant systems, suggesting these approaches can enable in silico inquiry into both pathway and mechanism identification in enzyme kinetics. For the second study, we investigated the electronic determinants of reactivity, using the enzyme ketol-acid reductoisomerase (KARI). KARI catalyzes first a methyl isomerization and then reduction with an active site comprised of several polar residues, two magnesium divalent cations, and NADPH. This study focused on isomerization, which is rate limiting, with two objectives: characterization of chemical mechanism in successful catalytic events (“reactive”) versus failed attempts to cross the barrier ("non-reactive"), and the interplay between atomic positions, electronic descriptors, and reactivity. Natural bonding orbital (NBO) analyses provided detailed electronic description of the dynamics through the reaction and revealed that successful catalytic events crossed the reaction barrier through a 3-center-2-electron (3C) bond, concurrent to isomerization of hydroxyl/carbonyls on the substrate. Interestingly, the non-reactive ensemble adopted a similar electronic pathway as the reactive ensemble, but its members were generally unable to form and sustain the 3C bond. Supervised machine learning classifiers then identified small subsets of geometric and electronic descriptors, “features”, that predicted reactivity; our results indicated that fewer electronic features were able to predict reactivity as effectively as a larger set of geometric features. Of these electronic features, the models selected diverse descriptors representing several facets of the chemical mechanism (charge, breaking–bond order, atomic orbital hybridization states, etc.). We then inquired how geometric features reported on electronic features with classifiers that leveraged pairs of geometric features to predict the relative magnitude of each electronic feature. Our findings indicated that the geometric, pair-feature models predicted electronic structure with comparable performance as cumulative geometric models, suggesting small subsets of features were capable of reporting on electronic descriptors, and that different subsets could be leveraged to describe various aspects of a chemical mechanism. Lastly, we revisited OMPDC in order to learn the key geometric features that distinguished between the simultaneous and stepwise pathways of decarboxylation, aggregating and labeling pathways drawn from WT and mutant systems ensembles. We leveraged classifiers that predicted between reactive pathways by selecting small subsets of structural features from 620 geometric features comprised of atoms from the active site. The classifiers performed comparably, with greater than 80% testing accuracy and AUC, between times starting from in the reactant basin to 30 fs into crossing the reaction barrier. Remarkably, model-selected features reported on chemically meaningful interactions despite no explicit prior knowledge of the mechanism in training. To illustrate this, we focused analyses on two particular features shown to be predictive while in the reactant basin, prior to crossing the barrier: a potential hydrogen-bond between D75*, an aspartate in the active site, and the 2'-hydroxyl of OMP, and electrostatic repulsion through the proximity of a different aspartate, D70, to the leaving group carboxylate of OMP. Analysis between the simultaneous and stepwise ensembles demonstrated that the simultaneous ensemble adopted shorter distances for both features, generally suggesting stronger interactions. Both features were additionally shown to be associated with the ability to distort the planarity of the orotidyl ring, where shorter distances for either feature were correlated with larger degrees of distortion. Taken together, this suggested the simultaneous ensemble was more effective at distorting the ground state structure prior to crossing the reaction barrier.


Coenzyme B12 Enzymes Part B

Coenzyme B12 Enzymes Part B
Author:
Publisher: Academic Press
Total Pages: 386
Release: 2022-05-27
Genre: Science
ISBN: 0323955584

Download Coenzyme B12 Enzymes Part B Book in PDF, ePub and Kindle

Coenzyme B12 Enzymes, Part B, Volume 169 in the Methods in Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on Structural characterization of cobalamin-dependent radical SAM methylases, Purification and characterization of sequential cobalamin-dependent radical SAM methylases ThnK and TokK in -lactam antibiotic biosynthesis, Characterization of the cobalamin-dependent radical S-adenosyl-L-methionine enzyme C-methyltransferase Fom3 in fosfomycin biosynthesis, Studies of OxsB and GenK, two B12-dependent radical SAM enzymes involved in natural product biosynthesis, Purification and structural elucidation of the cobalamin-dependent radical SAM enzyme OxsB, and more. Other chapters discuss Methods for studying the mechanisms of B12 enzymes, Computational investigations of B12 dependent enzymatic reactions, Using kinetic isotope effects to probe the mechanisms of adenosylcobalamin-dependent enzymes, Steady-state and pre-steady state kinetic analysis of ornithine 4,5-aminomutase, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in Methods in Enzymology series Includes the latest information on B12 Enzymes


Cell-Wide Identification of Metabolite-Protein Interactions

Cell-Wide Identification of Metabolite-Protein Interactions
Author: Aleksandra Skirycz
Publisher: Springer Nature
Total Pages: 261
Release: 2022-09-30
Genre: Science
ISBN: 1071626248

Download Cell-Wide Identification of Metabolite-Protein Interactions Book in PDF, ePub and Kindle

This thorough volume explores protocols of proteome- and metabolome-wide strategies for the identification of protein-small molecule complexes in different organisms, in order to shed light on these important regulatory interactions. Experimental and computational strategies to characterize protein-metabolite interactions are discussed, and recent advances in enabling technologies are featured as well. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice to ensure success in future research. Authoritative and practical, Cell-Wide Identification of Metabolite-Protein Interactions will aid researchers seeking a better understanding of the mechanisms of signal transduction occurring in the cell and assessing the effect of complex formation on cell physiology.


Computational Approaches to Biochemical Reactivity

Computational Approaches to Biochemical Reactivity
Author: Gábor Náray-Szabó
Publisher: Springer Science & Business Media
Total Pages: 386
Release: 2006-04-11
Genre: Science
ISBN: 0306469340

Download Computational Approaches to Biochemical Reactivity Book in PDF, ePub and Kindle

A quantitative description of the action of enzymes and other biological systems is both a challenge and a fundamental requirement for further progress in our und- standing of biochemical processes. This can help in practical design of new drugs and in the development of artificial enzymes as well as in fundamental understanding of the factors that control the activity of biological systems. Structural and biochemical st- ies have yielded major insights about the action of biological molecules and the mechanism of enzymatic reactions. However it is not entirely clear how to use this - portant information in a consistent and quantitative analysis of the factors that are - sponsible for rate acceleration in enzyme active sites. The problem is associated with the fact that reaction rates are determined by energetics (i. e. activation energies) and the available experimental methods by themselves cannot provide a correlation - tween structure and energy. Even mutations of specific active site residues, which are extremely useful, cannot tell us about the totality of the interaction between the active site and the substrate. In fact, short of inventing experiments that allow one to measure the forces in enzyme active sites it is hard to see how can one use a direct experimental approach to unambiguously correlate the structure and function of enzymes. In fact, in view of the complexity of biological systems it seems that only computers can handle the task of providing a quantitative structure-function correlation.


Using Mass Spectrometry for Biochemical Studies on Enzymatic Domains from Polyketide Synthases

Using Mass Spectrometry for Biochemical Studies on Enzymatic Domains from Polyketide Synthases
Author: Matthew Jenner
Publisher: Springer
Total Pages: 189
Release: 2016-04-27
Genre: Science
ISBN: 3319327232

Download Using Mass Spectrometry for Biochemical Studies on Enzymatic Domains from Polyketide Synthases Book in PDF, ePub and Kindle

This thesis reports studies on the substrate specificity of crucial ketosynthase (KS) domains from trans-AT Polyketide Synthases (PKSs). Using a combination of electrospray ionisation-mass spectrometry (ESI-MS) and simple N-acetyl cysteamine (SNAC) substrate mimics, the specificity of a range of KS domains from the bacillaene and psymberin PKSs have been succsessfully studied with regard to the initial acylation step of KS-catalysis. In addition, the ability to alter the substrate tolerance of KS domains by simple point mutations in the active site has been demonstrated. A series of acyl-ACPs have been synthesised using a novel methodology and employed to probe the substrate specificity of both KS domains and the previously uncharcterised acyl hydrolase domain, PedC. KS-catalysed chain elongation reactions have also been conducted and monitored by ESI-MS/MS. All KS domains studied exhibited higher substrate specificity at the elongation step than in the preceeding acylation step. Furthermore, a mechanism of reversible acylation is proposed using the PsyA ACP1-KS1 di-domain. The findings in this thesis provide important insights into mechanisms of KS specificity and show that mutagenesis can be used to expand the repertoire of acceptable substrates for future PKS engineering.