Compound Semiconductor Device Modelling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Compound Semiconductor Device Modelling PDF full book. Access full book title Compound Semiconductor Device Modelling.

Compound Semiconductor Device Modelling

Compound Semiconductor Device Modelling
Author: Christopher M. Snowden
Publisher: Springer Science & Business Media
Total Pages: 295
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1447120485

Download Compound Semiconductor Device Modelling Book in PDF, ePub and Kindle

Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.


Compound Semiconductor Device Modelling

Compound Semiconductor Device Modelling
Author: Christopher M. Snowden
Publisher: Springer
Total Pages: 286
Release: 1993-04-19
Genre: Technology & Engineering
ISBN: 9783540198277

Download Compound Semiconductor Device Modelling Book in PDF, ePub and Kindle

Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.


Semiconductor Device Modeling for VLSI

Semiconductor Device Modeling for VLSI
Author: Kwyro Lee
Publisher:
Total Pages: 747
Release: 1993-01-01
Genre: Technology & Engineering
ISBN: 9780138056568

Download Semiconductor Device Modeling for VLSI Book in PDF, ePub and Kindle

Explains basic semiconductor physics, and looks at bipolar junction, metal oxide semiconductor field effect, and compound semiconductor field effect transistors, thin film transistors, and circuit simulation


Semiconductor Device Modelling

Semiconductor Device Modelling
Author: Christopher M. Snowden
Publisher: Springer Science & Business Media
Total Pages: 267
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1447110331

Download Semiconductor Device Modelling Book in PDF, ePub and Kindle

Semiconductor device modelling has developed in recent years from being solely the domain of device physicists to span broader technological disciplines involved in device and electronic circuit design and develop ment. The rapid emergence of very high speed, high density integrated circuit technology and the drive towards high speed communications has meant that extremely small-scale device structures are used in contempor ary designs. The characterisation and analysis of these devices can no longer be satisfied by electrical measurements alone. Traditional equivalent circuit models and closed-form analytical models cannot always provide consis tently accurate results for all modes of operation of these very small devices. Furthermore, the highly competitive nature of the semiconductor industry has led to the need to minimise development costs and lead-time associated with introducing new designs. This has meant that there has been a greater demand for models capable of increasing our understanding of how these devices operate and capable of predicting accurate quantitative results. The desire to move towards computer aided design and expert systems has reinforced the need for models capable of representing device operation under DC, small-signal, large-signal and high frequency operation. It is also desirable to relate the physical structure of the device to the electrical performance. This demand for better models has led to the introduction of improved equivalent circuit models and a upsurge in interest in using physical models.


Compound Semiconductor Devices

Compound Semiconductor Devices
Author: Kenneth A. Jackson
Publisher: John Wiley & Sons
Total Pages: 188
Release: 2008-11-21
Genre: Technology & Engineering
ISBN: 3527611770

Download Compound Semiconductor Devices Book in PDF, ePub and Kindle

Compound Semiconductor Devices provides a comprehensive insight into today ́s standard technologies, covering the vast range of semiconductor products and their possible applications. The materials covered runs from the basics of conventional semiconductor technology through standard,power and opto semiconductors, to highly complex memories and microcontrollers and the special devices and modules for smartcards, automotive electronics, consumer electronics and telecommunications. Some chapters are devoted to the production of semiconductor components and their use in electronic systems as well as to quality management. The book offers students and users a unique overview of technology, architecture and areas of application of semiconductor products.


Noise in Semiconductor Devices

Noise in Semiconductor Devices
Author: Fabrizio Bonani
Publisher: Springer Science & Business Media
Total Pages: 241
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 3662045303

Download Noise in Semiconductor Devices Book in PDF, ePub and Kindle

Provides an overview of the physical basis of noise in semiconductor devices, and a detailed treatment of numerical noise simulation in small-signal conditions. It presents innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions.


Introduction to Semiconductor Device Modelling

Introduction to Semiconductor Device Modelling
Author: Christopher M. Snowden
Publisher: World Scientific
Total Pages: 242
Release: 1998
Genre: Science
ISBN: 9789810236939

Download Introduction to Semiconductor Device Modelling Book in PDF, ePub and Kindle

This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.


Silicon and Beyond

Silicon and Beyond
Author: Michael Shur
Publisher: World Scientific
Total Pages: 196
Release: 2000
Genre: Technology & Engineering
ISBN: 9789810242800

Download Silicon and Beyond Book in PDF, ePub and Kindle

The steady downscaling of device-feature size combined with a rapid increase in circuit complexity as well as the introduction of new device concepts based on non-silicon-material systems poses great challenges for device and circuit designers. One of the major tasks is the development of new and improved device models needed for accurate device and circuit design. Another task is the development of new circuit-simulation tools to handle very large and complex circuits. This book addresses both these issues with up-to-date reviews written by leading experts in the field. The first three chapters of the book discuss advanced device models both for existing technologies and for new, emerging technologies. Among the topics covered are models for MOSFETs, thin-film transitors (TFTs), and compound semiconductor devices, including GaAs HEMTs and HFETs, heterodimensional devices, quantum-tunneling devices, as well as wide-bandgap devices. Chapters 4 and 5 discuss advanced circuit simulators that hold promise for,handling circuits of much higher complexity than what is possible for typical state-of-the-art circuit simulators today.


SEMICONDUCTOR DEVICES

SEMICONDUCTOR DEVICES
Author: NANDITA DASGUPTA
Publisher: PHI Learning Pvt. Ltd.
Total Pages: 342
Release: 2004-01-01
Genre: Technology & Engineering
ISBN: 812032398X

Download SEMICONDUCTOR DEVICES Book in PDF, ePub and Kindle

Aimed primarily at the undergraduate students pursuing courses in semiconductor physics and semiconductor devices, this text emphasizes the physical understanding of the underlying principles of the subject. Since engineers use semiconductor devices as circuit elements, device models commonly used in the circuit simulators, e.g. SPICE, have been discussed in detail. Advanced topics such as lasers, heterojunction bipolar transistors, second order effects in BJTs, and MOSFETs are also covered. With such in-depth coverage and a practical approach, practising engineers and PG students can also use this book as a ready reference.


Compound Semiconductor Materials and Devices

Compound Semiconductor Materials and Devices
Author: Zhaojun Liu
Publisher: Springer Nature
Total Pages: 65
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031020286

Download Compound Semiconductor Materials and Devices Book in PDF, ePub and Kindle

Ever since its invention in the 1980s, the compound semiconductor heterojunction-based high electron mobility transistor (HEMT) has been widely used in radio frequency (RF) applications. This book provides readers with broad coverage on techniques and new trends of HEMT, employing leading compound semiconductors, III-N and III-V materials. The content includes an overview of GaN HEMT device-scaling technologies and experimental research breakthroughs in fabricating various GaN MOSHEMT transistors. Readers are offered an inspiring example of monolithic integration of HEMT with LEDs, too. The authors compile the most relevant aspects of III-V HEMT, including the current status of state-of-art HEMTs, their possibility of replacing the Si CMOS transistor channel, and growth opportunities of III-V materials on an Si substrate. With detailed exploration and explanations, the book is a helpful source suitable for anyone learning about and working on compound semiconductor devices.