Complex Electromagnetic Problems And Numerical Simulation Approaches PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Complex Electromagnetic Problems And Numerical Simulation Approaches PDF full book. Access full book title Complex Electromagnetic Problems And Numerical Simulation Approaches.

Complex Electromagnetic Problems and Numerical Simulation Approaches

Complex Electromagnetic Problems and Numerical Simulation Approaches
Author: Levent Sevgi
Publisher: John Wiley & Sons
Total Pages: 412
Release: 2003-06-10
Genre: Science
ISBN: 9780471430629

Download Complex Electromagnetic Problems and Numerical Simulation Approaches Book in PDF, ePub and Kindle

Today, engineering problems are very complex, requiring powerful computer simulations to power them. For engineers, observable-based parameterization as well as numerically computable formsâ??with rapid convergent properties if in a seriesâ??are essential. Complex Electromagnetic Problems and Numerical Simulation Approaches, along with its companion FTP site, will show you how to take on complex electromagnetic problems and solve them in an accurate and efficient manner. Organized into two distinct parts, this comprehensive resource first introduces you to the concepts, approaches, and numerical simulation techniques that will be used throughout the book and then, in Part II, offers step-by-step guidance as to their practical, real-world applications. Self-contained chapters will enable you to find specific solutions to numerous problems. Filled with in-depth insight and expert advice, Complex Electromagnetic Problems and Numerical Simulation Approaches: Describes ground wave propagation Examines antenna systems Deals with radar cross section (RCS) modeling Explores microstrip network design with FDTD and TLM techniques Discusses electromagnetic compatibility (EMC) and bio-electromagnetics (BEM) modeling Presents radar simulation Whether you're a professional electromagnetic engineer requiring a consolidated overview of the subject or an academic/student who wishes to use powerful simulators as a learning tool, Complex Electromagnetic Problems and Numerical Simulation Approaches - with its focus on model development, model justification, and range of validity - is the right book for you.


Numerical Analysis for Electromagnetic Integral Equations

Numerical Analysis for Electromagnetic Integral Equations
Author: Karl F. Warnick
Publisher: Artech House
Total Pages: 234
Release: 2008
Genre: Mathematics
ISBN: 1596933348

Download Numerical Analysis for Electromagnetic Integral Equations Book in PDF, ePub and Kindle

Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.


Electromagnetic Modeling and Simulation

Electromagnetic Modeling and Simulation
Author: Levent Sevgi
Publisher: John Wiley & Sons
Total Pages: 665
Release: 2014-03-13
Genre: Science
ISBN: 111887711X

Download Electromagnetic Modeling and Simulation Book in PDF, ePub and Kindle

This unique book presents simple, easy-to-use, but effective short codes as well as virtual tools that can be used by electrical, electronic, communication, and computer engineers in a broad range of electrical engineering problems Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In this book, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. Unique in coverage and tutorial approach, Electromagnetic Modeling and Simulation covers fundamental analytical and numerical models that are widely used in teaching, research, and engineering designs—including mode and ray summation approaches with the canonical 2D nonpenetrable parallel plate waveguide as well as FDTD, MoM, and SSPE scripts. The book also establishes an intelligent balance among the essentials of EM MODSIM: The Problem (the physics), The Theory and Models (mathematical background and analytical solutions), and The Simulations (code developing plus validation, verification, and calibration). Classroom tested in graduate-level and short courses, Electromagnetic Modeling and Simulation: Clarifies concepts through numerous worked problems and quizzes provided throughout the book Features valuable MATLAB-based, user-friendly, effective engineering and research virtual design tools Includes sample scenarios and video clips recorded during characteristic simulations that visually impact learning—available on wiley.com Provides readers with their first steps in EM MODSIM as well as tools for medium and high-level code developers and users Electromagnetic Modeling and Simulation thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling, making it an ideal resource for electrical engineers and researchers.


Monte Carlo Methods for Electromagnetics

Monte Carlo Methods for Electromagnetics
Author: Matthew N.O. Sadiku
Publisher: CRC Press
Total Pages: 139
Release: 2018-10-03
Genre: Mathematics
ISBN: 1351834355

Download Monte Carlo Methods for Electromagnetics Book in PDF, ePub and Kindle

Until now, novices had to painstakingly dig through the literature to discover how to use Monte Carlo techniques for solving electromagnetic problems. Written by one of the foremost researchers in the field, Monte Carlo Methods for Electromagnetics provides a solid understanding of these methods and their applications in electromagnetic computation. Including much of his own work, the author brings together essential information from several different publications. Using a simple, clear writing style, the author begins with a historical background and review of electromagnetic theory. After addressing probability and statistics, he introduces the finite difference method as well as the fixed and floating random walk Monte Carlo methods. The text then applies the Exodus method to Laplace’s and Poisson’s equations and presents Monte Carlo techniques for handing Neumann problems. It also deals with whole field computation using the Markov chain, applies Monte Carlo methods to time-varying diffusion problems, and explores wave scattering due to random rough surfaces. The final chapter covers multidimensional integration. Although numerical techniques have become the standard tools for solving practical, complex electromagnetic problems, there is no book currently available that focuses exclusively on Monte Carlo techniques for electromagnetics. Alleviating this problem, this book describes Monte Carlo methods as they are used in the field of electromagnetics.


Electromagnetics in a Complex World

Electromagnetics in a Complex World
Author: Innocenzo Pinto
Publisher: Springer Science & Business Media
Total Pages: 327
Release: 2012-12-06
Genre: Science
ISBN: 3642185967

Download Electromagnetics in a Complex World Book in PDF, ePub and Kindle

Provides the state of the art of modelling, simulation and calculation methods for electromagnetic fields and waves and their application.


Complex Computing-Networks

Complex Computing-Networks
Author: Izzet Cem Göknar
Publisher: Springer Science & Business Media
Total Pages: 404
Release: 2006-05-31
Genre: Science
ISBN: 3540306366

Download Complex Computing-Networks Book in PDF, ePub and Kindle

This book contains the ceremonials and the proceedings pertaining to the Int- national Symposium CCN2005 on “Complex Computing-Networks: A Link between Brain-like and Wave-Oriented Electrodynamics Algorithms,” convened at Do ?u ? University of Istanbul, Turkey, on 13–14 June 2005, in connection with the bestowal of the honorary doctorate degrees on Professors Leopold B. Felsen and Leon O. Chua, for their extraordinary achievements in electromagnetics, and n- linear systems, respectively. The symposium was co-organized by Cem Göknar and Levent Sevgi, in consultation with Leopold B. Felsen and Leon O. Chua. Istanbul is a city with wonderful natural and historical surroundings, a city not only interconnecting Asia and Europe but also Eastern and Western cultures. Therefore, CCN2005 was a memorable event not only in the lifetime of Drs. Felsen, Chua, and their families, but also for all the other participants who were there to congratulate the recipients and participate in the symposium.


Electromagnetic Diffraction Modeling and Simulation with MATLAB

Electromagnetic Diffraction Modeling and Simulation with MATLAB
Author: Gökhan Apaydin
Publisher: Artech House
Total Pages: 364
Release: 2021-02-28
Genre: Science
ISBN: 1630817805

Download Electromagnetic Diffraction Modeling and Simulation with MATLAB Book in PDF, ePub and Kindle

This exciting new resource presents a comprehensive introduction to the fundamentals of diffraction of two-dimensional canonical structures, including wedge, strip, and triangular cylinder with different boundary conditions. Maxwell equations are discussed, along with wave equation and scattered, diffracted and fringe fields. Geometric optics, as well as the geometric theory of diffraction are explained. With MATLAB scripts included for several well-known electromagnetic diffraction problems, this book discusses diffraction fundamentals of two-dimensional structures with different boundary conditions and analytical numerical methods that are used to show diffraction. The book introduces fundamental concepts of electromagnetic problems, identities, and definitions for diffraction modeling. Basic coordinate systems, boundary conditions, wave equation, and Green’s function problem are given. The scattered fields, diffracted fields, and fringe fields, radar cross section for diffraction modeling are presented. Behaviors of electromagnetic waves around the two-dimensional canonical wedge and canonical strip are also explored. Diffraction of trilateral cylinders and wedges with rounded edges is investigated as well as double tip diffraction using Finite Difference Time Domain and Method of Moments. A MATLAB based virtual tool, developed with graphical user interface (GUI), for the visualization of both fringe currents and fringe waves is included, using numerical FDTD and MoM algorithm and High-Frequency Asymptotics approaches.


Advances in Time-Domain Computational Electromagnetic Methods

Advances in Time-Domain Computational Electromagnetic Methods
Author: Qiang Ren
Publisher: John Wiley & Sons
Total Pages: 724
Release: 2022-11-15
Genre: Science
ISBN: 1119808391

Download Advances in Time-Domain Computational Electromagnetic Methods Book in PDF, ePub and Kindle

Advances in Time-Domain Computational Electromagnetic Methods Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discusses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/ quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.


Teaching Electromagnetics

Teaching Electromagnetics
Author: Krishnasamy T. Selvan
Publisher: CRC Press
Total Pages: 258
Release: 2021-06-18
Genre: Technology & Engineering
ISBN: 1000400581

Download Teaching Electromagnetics Book in PDF, ePub and Kindle

Teaching Electromagnetics: Innovative Approaches and Pedagogical Strategies is a guide for educators addressing course content and pedagogical methods primarily at the undergraduate level in electromagnetic theory and its applications. Topics include teaching methods, lab experiences and hands-on learning, and course structures that help teachers respond effectively to trends in learning styles and evolving engineering curricula. The book grapples with issues related to the recent worldwide shift to remote teaching. Each chapter begins with a high-level consideration of the topic, reviews previous work and publications, and gives the reader a broad picture of the topic before delving into details. Chapters include specific guidance for those who want to implement the methods and assessment results and evaluation of the effectiveness of the methods. Respecting the limited time available to the average teacher to try new methods, the chapters focus on why an instructor should adopt the methods proposed in it. Topics include virtual laboratories, computer-assisted learning, and MATLAB® tools. The authors also review flipped classrooms and online teaching methods that support remote teaching and learning. The end result should be an impact on the reader represented by improvements to his or her practical teaching methods and curricular approach to electromagnetics education. The book is intended for electrical engineering professors, students, lab instructors, and practicing engineers with an interest in teaching and learning. In summary, this book: Surveys methods and tools for teaching the foundations of wireless communications and electromagnetic theory Presents practical experience and best practices for topical coverage, course sequencing, and content Covers virtual laboratories, computer-assisted learning, and MATLAB tools Reviews flipped classroom and online teaching methods that support remote teaching and learning Helps instructors in RF systems, field theory, and wireless communications bring their teaching practice up to date Dr. Krishnasamy T. Selvan is Professor in the Department of Electronics & Communication Engineering, SSN College of Engineering, since June 2012. Dr. Karl F. Warnick is Professor in the Department of Electrical and Computer Engineering at BYU.


Design of Digital Phase Shifters for Multipurpose Communication Systems

Design of Digital Phase Shifters for Multipurpose Communication Systems
Author: Binboga Siddik Yarman
Publisher: CRC Press
Total Pages: 653
Release: 2022-09-01
Genre: Medical
ISBN: 1000794253

Download Design of Digital Phase Shifters for Multipurpose Communication Systems Book in PDF, ePub and Kindle

This book aims to cover a new emerging need in designing digital phase shifter for modern communication systems. With the advancement of new generation mobile communication systems, directed beams of antenna arrays save a substantial amount of power as well as improve the communication quality. In this regard, beam-forming circuits, such as digital phase shifters (DPS) constitute essential parts of the antenna array systems. Therefore, this book is devoted to the design of digital phase shifters for various communications systems. Nowadays, phase array systems demand compact phase shifters suitable for chip implementation with wide phase-range and broad frequency band. Each chapter of this book is organized as stand-alone in such a way that the reader requires no specific background acquired from the other chapters. For each phase shifter topology introduced in this book, the reader is furnished with explicit design equations to construct the circuit under consideration. Furthermore, design equations are programmed using MATLAB to assess the electrical performance of the phase shifters with ideal and lossy components. MATLAB design programs are given at the and of each chapter as appendices and provided as soft copy on the web page of the book. In chapters 12 and 14, MMIC layouts for the lattice and T-section based DPS are provided for the readers. It is hoped that an interested reader can immediately identifies the “optimum phase shifter topology” for the need under consideration with its estimated electric performance.