Comparison Of Uncertainty Analysis For Community Based Watershed Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Comparison Of Uncertainty Analysis For Community Based Watershed Models PDF full book. Access full book title Comparison Of Uncertainty Analysis For Community Based Watershed Models.

Calibration of Watershed Models

Calibration of Watershed Models
Author: Qingyun Duan
Publisher: John Wiley & Sons
Total Pages: 356
Release: 2003-01-10
Genre: Science
ISBN: 087590355X

Download Calibration of Watershed Models Book in PDF, ePub and Kindle

Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 6. During the past four decades, computer-based mathematical models of watershed hydrology have been widely used for a variety of applications including hydrologic forecasting, hydrologic design, and water resources management. These models are based on general mathematical descriptions of the watershed processes that transform natural forcing (e.g., rainfall over the landscape) into response (e.g., runoff in the rivers). The user of a watershed hydrology model must specify the model parameters before the model is able to properly simulate the watershed behavior.


Stochastic Modeling and Uncertainty Assessment for Watershed Water Quality Management

Stochastic Modeling and Uncertainty Assessment for Watershed Water Quality Management
Author: Yi Zheng
Publisher:
Total Pages: 430
Release: 2007
Genre:
ISBN:

Download Stochastic Modeling and Uncertainty Assessment for Watershed Water Quality Management Book in PDF, ePub and Kindle

Complex watershed water quality models have been increasingly used to support Total Maximum Daily Load (TMDL) development. However, systematic approaches for addressing the significant simulation uncertainty are lacking. For TMDLs supported by complex watershed models, defining the margin of safety (MOS) component through a rigorous uncertainty analysis remains a significant challenge. This study aimed to develop (1) a systematic approach of uncertainty analysis for complex watershed water quality models in the watershed management context; and (2) a framework for defining the MOS with an explicit consideration of uncertainty and degree of protection. A global sensitivity analysis technique was first applied to select critical model parameters. A framework for sources of uncertainty and their interactions was built. Based on this framework, Generalized Likelihood Uncertainty Estimation (GLUE) was initially evaluated as a potential approach for conducting stochastic simulation and uncertainty analysis for complex watershed models. The limitations of GLUE became evident, which led to the development of a new Bayesian approach, Management Objectives Constrained Analysis of Uncertainty (MOCAU). The concept Compliance of Confidence (CC) was then introduced to bridge the gap between modeling uncertainty and MOS. An optimization model was also developed for cost-minimized TMDLs. This study used WARMF as an example of a complex watershed model and constructed a synthetic watershed for developing and testing methodologies. The methodologies were also implemented to study the diazinon TMDL in the Newport Bay watershed (southern California). This research contributes to the theory of stochastic watershed water quality modeling, as well as to the practices of managing watershed water quality.


Using Prediction Uncertainty Analysis to Design Hydrologic Monitoring Networks

Using Prediction Uncertainty Analysis to Design Hydrologic Monitoring Networks
Author: Michael N Fienen
Publisher: CreateSpace
Total Pages: 50
Release: 2014-08-01
Genre:
ISBN: 9781500505202

Download Using Prediction Uncertainty Analysis to Design Hydrologic Monitoring Networks Book in PDF, ePub and Kindle

The importance of monitoring networks for resource-management decisions is becoming more recognized, in both theory and application. Quantitative computer models provide a science-based framework to evaluate the efficacy and efficiency of existing and possible future monitoring networks. In the study described herein, two suites of tools were used to evaluate the worth of new data for specific predictions, which in turn can support efficient use of resources needed to construct a monitoring network. The approach evaluates the uncertainty of a model prediction and, by using linear propagation of uncertainty, estimates how much uncertainty could be reduced if the model were calibrated with addition information (increased a priori knowledge of parameter values or new observations). The theoretical underpinnings of the two suites of tools addressing this technique are compared, and their application to a hypothetical model based on a local model inset into the Great Lakes Water Availability Pilot model are described. Results show that meaningful guidance for monitoring network design can be obtained by using the methods explored. The validity of this guidance depends substantially on the parameterization as well; hence, parameterization must be considered not only when designing the parameter-estimation paradigm but also-importantly-when designing the prediction-uncertainty paradigm.


Review of the New York City Watershed Protection Program

Review of the New York City Watershed Protection Program
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 423
Release: 2020-12-04
Genre: Science
ISBN: 0309679702

Download Review of the New York City Watershed Protection Program Book in PDF, ePub and Kindle

New York City's municipal water supply system provides about 1 billion gallons of drinking water a day to over 8.5 million people in New York City and about 1 million people living in nearby Westchester, Putnam, Ulster, and Orange counties. The combined water supply system includes 19 reservoirs and three controlled lakes with a total storage capacity of approximately 580 billion gallons. The city's Watershed Protection Program is intended to maintain and enhance the high quality of these surface water sources. Review of the New York City Watershed Protection Program assesses the efficacy and future of New York City's watershed management activities. The report identifies program areas that may require future change or action, including continued efforts to address turbidity and responding to changes in reservoir water quality as a result of climate change.


Uncertainty and Sensitivity Analysis for Watershed Models with Calibrated Parameters

Uncertainty and Sensitivity Analysis for Watershed Models with Calibrated Parameters
Author: Seunguk Lee
Publisher:
Total Pages: 0
Release: 2010
Genre:
ISBN:

Download Uncertainty and Sensitivity Analysis for Watershed Models with Calibrated Parameters Book in PDF, ePub and Kindle

This thesis provides a critique and evaluation of the Generalized Likelihood Uncertainty Estimation (GLUE) methodology, and provides an appraisal of sensitivity analysis methods for watershed models with calibrated parameters. The first part of this thesis explores the strengths and weaknesses of the GLUE methodology with commonly adopted subjective likelihood measures using a simple linear watershed model. Recent research documents that the widely accepted GLUE procedure for describing forecasting precision and the impact of parameter uncertainty in rainfall-runoff watershed models fails to achieve the intended purpose when used with an informal likelihood measure (Christensen, 2004; Montanari, 2005; Mantovan and Todini, 2006; Stedinger et al., 2008). In particular, GLUE generally fails to produce intervals that capture the precision of estimated parameters, and the distribution of differences between predictions and future observations. This thesis illustrates these problems with GLUE using a simple linear rainfall-runoff model so that model calibration is a linear regression problem for which exact expressions for prediction precision and parameter uncertainty are well known and understood. The results show that the choice of a likelihood function is critical. A likelihood function needs to provide a reasonable distribution for the model errors for the statistical inference and resulting uncertainty and prediction intervals to be valid. The second part of this thesis discusses simple uncertainty and sensitivity analysis for watershed models when parameter estimates result form a joint calibration to observed data. Traditional measures of sensitivity in watershed modeling are based upon a framework wherein parameters are specified externally to a model, so one can independently investigate the impact of uncertainty in each parameter on model output. However, when parameter estimates result from a joint calibration to observed data, the resulting parameter estimators are interdependent and different sensitivity analysis procedures should be employed. For example, over some range, evaporation rates may be adjusted to correct for changes in a runoff coefficient, and vice versa. As a result, descriptions of the precision of such parameters may be very large individually, even though their joint response is well defined by the calibration data. These issues are illustrated with the simple abc watershed model. When fitting the abc watershed model to data, in some cases our analysis explicitly accounts for rainfall measurement errors so as to adequately represent the likelihood function for the data given the major source of errors causing lack of fit. The calibration results show that the daily precipitation from one gauge employed provides an imperfect description of basin precipitation, and precipitation errors results in correlation among flow errors and degraded the goodness of fit.


Hillslope and Watershed Hydrology

Hillslope and Watershed Hydrology
Author: Christopher J. Duffy
Publisher: MDPI
Total Pages: 255
Release: 2018-09-14
Genre: Science
ISBN: 3038429511

Download Hillslope and Watershed Hydrology Book in PDF, ePub and Kindle

This book is a printed edition of the Special Issue "Hillslope and Watershed Hydrology" that was published in Water