Classification And Data Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Classification And Data Analysis PDF full book. Access full book title Classification And Data Analysis.

Classification and Data Analysis

Classification and Data Analysis
Author: Krzysztof Jajuga
Publisher: Springer Nature
Total Pages: 334
Release: 2020-08-28
Genre: Business & Economics
ISBN: 3030523489

Download Classification and Data Analysis Book in PDF, ePub and Kindle

This volume gathers peer-reviewed contributions on data analysis, classification and related areas presented at the 28th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2019, held in Szczecin, Poland, on September 18–20, 2019. Providing a balance between theoretical and methodological contributions and empirical papers, it covers a broad variety of topics, ranging from multivariate data analysis, classification and regression, symbolic (and other) data analysis, visualization, data mining, and computer methods to composite measures, and numerous applications of data analysis methods in economics, finance and other social sciences. The book is intended for a wide audience, including researchers at universities and research institutions, graduate and doctoral students, practitioners, data scientists and employees in public statistical institutions.


Data Analysis, Classification, and Related Methods

Data Analysis, Classification, and Related Methods
Author: Henk A.L. Kiers
Publisher: Springer Science & Business Media
Total Pages: 428
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642597890

Download Data Analysis, Classification, and Related Methods Book in PDF, ePub and Kindle

This volume contains a selection of papers presented at the Seven~h Confer ence of the International Federation of Classification Societies (IFCS-2000), which was held in Namur, Belgium, July 11-14,2000. From the originally sub mitted papers, a careful review process involving two reviewers per paper, led to the selection of 65 papers that were considered suitable for publication in this book. The present book contains original research contributions, innovative ap plications and overview papers in various fields within data analysis, classifi cation, and related methods. Given the fast publication process, the research results are still up-to-date and coincide with their actual presentation at the IFCS-2000 conference. The topics captured are: • Cluster analysis • Comparison of clusterings • Fuzzy clustering • Discriminant analysis • Mixture models • Analysis of relationships data • Symbolic data analysis • Regression trees • Data mining and neural networks • Pattern recognition • Multivariate data analysis • Robust data analysis • Data science and sampling The IFCS (International Federation of Classification Societies) The IFCS promotes the dissemination of technical and scientific information data analysis, classification, related methods, and their applica concerning tions.


Classification, Data Analysis, and Knowledge Organization

Classification, Data Analysis, and Knowledge Organization
Author: Hans-Hermann Bock
Publisher: Springer Science & Business Media
Total Pages: 404
Release: 2012-12-06
Genre: Business & Economics
ISBN: 3642763073

Download Classification, Data Analysis, and Knowledge Organization Book in PDF, ePub and Kindle

In science, industry, public administration and documentation centers large amounts of data and information are collected which must be analyzed, ordered, visualized, classified and stored efficiently in order to be useful for practical applications. This volume contains 50 selected theoretical and applied papers presenting a wealth of new and innovative ideas, methods, models and systems which can be used for this purpose. It combines papers and strategies from two main streams of research in an interdisciplinary, dynamic and exciting way: On the one hand, mathematical and statistical methods are described which allow a quantitative analysis of data, provide strategies for classifying objects or making exploratory searches for interesting structures, and give ways to make comprehensive graphical displays of large arrays of data. On the other hand, papers related to information sciences, informatics and data bank systems provide powerful tools for representing, modelling, storing and retrieving facts, data and knowledge characterized by qualitative descriptors, semantic relations, or linguistic concepts. The integration of both fields and a special part on applied problems from biology, medicine, archeology, industry and administration assure that this volume will be informative and useful for theory and practice.


Data Science and Classification

Data Science and Classification
Author: International Federation of Classification Societies. Conference
Publisher: Springer
Total Pages: 0
Release: 2006
Genre: Cluster analysis
ISBN: 9786610627370

Download Data Science and Classification Book in PDF, ePub and Kindle

Provides methodological developments in data analysis and classification. Apart from structural and theoretical results, this book, of value to researchers, shows how to apply the developments to a variety of problems, for example, in medicine, microarray analysis, social network structures, and music.


Classification, (big) Data Analysis and Statistical Learning

Classification, (big) Data Analysis and Statistical Learning
Author: Francesco Mola
Publisher:
Total Pages: 242
Release: 2018
Genre: Mathematical statistics
ISBN: 9783319557090

Download Classification, (big) Data Analysis and Statistical Learning Book in PDF, ePub and Kindle

This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pula (Cagliari), Italy, October 8-10, 2015.


Classification, Clustering, and Data Analysis

Classification, Clustering, and Data Analysis
Author: Krzystof Jajuga
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 2012-12-06
Genre: Computers
ISBN: 3642561810

Download Classification, Clustering, and Data Analysis Book in PDF, ePub and Kindle

The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.


Data Science, Classification, and Related Methods

Data Science, Classification, and Related Methods
Author: Chikio Hayashi
Publisher: Springer Science & Business Media
Total Pages: 786
Release: 2013-11-11
Genre: Mathematics
ISBN: 4431659501

Download Data Science, Classification, and Related Methods Book in PDF, ePub and Kindle

This volume contains selected papers covering a wide range of topics, including theoretical and methodological advances relating to data gathering, classification and clustering, exploratory and multivariate data analysis, and knowledge seeking and discovery. The result is a broad view of the state of the art, making this an essential work not only for data analysts, mathematicians, and statisticians, but also for researchers involved in data processing at all stages from data gathering to decision making.


New Approaches in Classification and Data Analysis

New Approaches in Classification and Data Analysis
Author: Edwin Diday
Publisher: Springer Science & Business Media
Total Pages: 695
Release: 2013-03-14
Genre: Business & Economics
ISBN: 3642511759

Download New Approaches in Classification and Data Analysis Book in PDF, ePub and Kindle

The subject of this book is the analysis and processing of structural or quantitative data with emphasis on classification methods, new algorithms as well as applications in various fields related to data analysis and classification. The book presents the state of the art in world-wide research and application of methods from the fields indicated above and consists of survey papers as well as research papers.


Classification and Data Mining

Classification and Data Mining
Author: Antonio Giusti
Publisher: Springer Science & Business Media
Total Pages: 291
Release: 2012-12-18
Genre: Mathematics
ISBN: 3642288944

Download Classification and Data Mining Book in PDF, ePub and Kindle

​​​​​​​​​This volume contains both methodological papers showing new original methods, and papers on applications illustrating how new domain-specific knowledge can be made available from data by clever use of data analysis methods. The volume is subdivided in three parts: Classification and Data Analysis; Data Mining; and Applications. The selection of peer reviewed papers had been presented at a meeting of classification societies held in Florence, Italy, in the area of "Classification and Data Mining".​


The Analysis of Cross-Classified Categorical Data

The Analysis of Cross-Classified Categorical Data
Author: Stephen E. Fienberg
Publisher: Springer Science & Business Media
Total Pages: 208
Release: 2007-08-06
Genre: Mathematics
ISBN: 0387728252

Download The Analysis of Cross-Classified Categorical Data Book in PDF, ePub and Kindle

A variety of biological and social science data come in the form of cross-classified tables of counts, commonly referred to as contingency tables. Until recent years the statistical and computational techniques available for the analysis of cross-classified data were quite limited. This book presents some of the recent work on the statistical analysis of cross-classified data using longlinear models, especially in the multidimensional situation.