Characterization Of A Neutron Imaging Platform Utilizing A Compact Electronic Neutron Generator For Evaluation Of Analog And Digital Neutron Imaging Methods And Techniques PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Characterization Of A Neutron Imaging Platform Utilizing A Compact Electronic Neutron Generator For Evaluation Of Analog And Digital Neutron Imaging Methods And Techniques PDF full book. Access full book title Characterization Of A Neutron Imaging Platform Utilizing A Compact Electronic Neutron Generator For Evaluation Of Analog And Digital Neutron Imaging Methods And Techniques.

Characterization of a Neutron Imaging Platform Utilizing a Compact Electronic Neutron Generator for Evaluation of Analog and Digital Neutron Imaging Methods and Techniques

Characterization of a Neutron Imaging Platform Utilizing a Compact Electronic Neutron Generator for Evaluation of Analog and Digital Neutron Imaging Methods and Techniques
Author: Michael James Taylor
Publisher:
Total Pages: 266
Release: 2019
Genre:
ISBN:

Download Characterization of a Neutron Imaging Platform Utilizing a Compact Electronic Neutron Generator for Evaluation of Analog and Digital Neutron Imaging Methods and Techniques Book in PDF, ePub and Kindle

Unlike X-Rays that interact strongly with the electron cloud surrounding atoms, neutrons interact very weakly with these electrons, but quite strongly with the nucleus of the atom. X-Rays follow a nearly linear trend of decreasing transmission as the atomic number of the element increases. Neutrons follow no such behavior and certain isotopes of elements such as lithium, boron, cadmium, and gadolinium interact very strongly with neutrons, unlike dense elements such as lead or tungsten. This gives neutrons a unique probing capability where X-Rays do not suffice. Neutron imaging is widely used in the commercial sector for munitions and critical aerospace component inspection as well as in the research realm for biological forensics, cultural heritage providence studies, and capturing repetitive processes such as cyclical fluid motion in rotating motors. Current neutron sources are typically nuclear reactors and spallation sources that provide incredibly high neutron yields and flux for the images, leading to reduced image times and/or high spatial resolution as well as new imaging techniques such as computed tomography, polarized neutron imaging, and phase contrast imaging. However, such sources are very expensive, require thorough regulatory oversight, and pose biological hazards from spent nuclear materials. Smaller sources such as sealed tube deuterium-deuterium or deuterium-tritium sources can allow for in-field inspection at a fraction of the cost of a reactor, but don't necessarily provide fast image acquisitions or adequate image quality. This thesis explores a system that is intended to fill the space between weak portable devices and strong, costly, immobile ones. An accelerator-based neutron generator has been designed and manufactured by Phoenix LLC in Madison, WI. This system operates on the principle of deuterium-deuterium fusion, which releases a free 2.45MeV (nominal) neutron in the fusion process. The system can be installed and commissioned in different locations throughout its lifetime and provides for in-field or commercial inspection of components. It has a neutron yield several orders of magnitude higher than sealed-tube neutron sources. The goal herein was to: enhance the performance of the neutron generator through careful beamline design from the source to the target to obtain the maximum neutron yield, optimize the geometry of the neutron moderator and collimator to maximize the imaging metrics of a thermalized and collimated neutron beam free of background gamma and fast neutron radiation contamination, and find efficient neutron detector solutions that can capture high-quality neutron images. Monte Carlo simulations were extensively employed for these optimization efforts. The system has been shown to produce high quality neutron radiographs in terms of contrast, noise, and resolution, using many different techniques for imaging. Many materials were explored for moderation and shielding, and many neutron detectors were researched and experimented with to demonstrate advantages and disadvantages for their use on the Phoenix neutron imaging system. Sample images will be shown and discussed including conventional radiography using medical, industrial, and photographic film, 2-dimension digital imaging using pixelated cameras such as Charge Coupled Devices (CCD), Complementary Metal Oxide Semiconductors (CMOS), amorphous Silicon (aSi), and Computed Radiography (CR). Neutron Computed Tomography (nCT) is demonstrated as a 3-dimensional imaging technique as well. Case studies will be discussed and options for further optimization for collimator, moderator, and detector designs will be outlined. Recommendations for future research will be discussed in the final chapter.


Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source

Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source
Author: Ying Wu
Publisher:
Total Pages: 250
Release: 2009
Genre:
ISBN:

Download Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source Book in PDF, ePub and Kindle

Ion source development plays an important role for improving and advancing the neutron generator technology used for active interrogation techniques employed by the Department of Homeland Security. Active neutron interrogation using compact neutron generators has been around since the late 1950's for use in oil well logging. However, since the September 11th, 2001 terrorists attack, much attention has been paid to the field of active neutron interrogation for detecting hidden explosives and special nuclear materials (SNM) in cargo and luggage containers through the development of effective and efficient radioactive sources and detectors. In particular, the Associated Particle Imaging (API) method for detecting and imaging explosives is of great interest New compact neutron generators will help to enhance the capabilities of existing threat detection systems and promote the development of cutting-edge detection technologies. The work performed in this thesis includes the testing of various ion source configurations and the development and characterization of an inductively coupled radio frequency (RF) ion source for use in compact neutron generators. These ion source designs have been investigated for the purpose of D-T neutron generation for explosive detection via the Associated Particle Imaging (API) technique. API makes use of the 3.5 MeV alpha particles that are produced simultaneously with the 14 MeV neutrons in the deuterium-tritium (2D(3T, n)4) fusion reaction to determine the direction of the neutrons and to reduce background noise. The Associated Particle Imaging neutron generator required a beam spot of 1-mm or less in diameter at the target in order to achieve the necessary spatial image resolution. For portable neutron generators used in API, the ion source and target cannot be water-cooled and the power deposited on the target must be low. By increasing the atomic ion fraction, the ion beam can be used more efficiently to generate neutrons, resulting in a lower beam power requirement and an increased lifetime of the alpha detector inside the acceleration column. Various source configurations, antenna design, and permanent magnet placement have been investigated so as to develop an ion source which could provide high monatomic deuterium species and high current density at relatively low RF powers (less than 200 W). In this work, an RF ion source was developed that uses an external, planar, spiral antenna at 13.56 MHz with a quartz source body and side multi-cusp magnets to generate hydrogen isotope plasmas with high mono-atomic ion species (> 80%) while consuming only 150 watts of power and operating under 10 mTorr of gas pressure. A single acceleration gap with a secondary electron suppression electrode are used in the tube. Experimental measurements of the ion source plasma parameters including ion current density, atomic ion fraction, ignition and operating pressures, electron temperature, and electron density are presented along with a discussion on the ion optics and engineering challenges. It is shown that the measured neutron yield for the developed D-D neutron generator was 2 x 105 n/s, which scales to 8 x 107 n/s for D-T operation. In addition, initial measurements of the neutron generator performance including the beam spot size, associated particle detection, and neutron tube (without pumping) operation will be discussed. Some suggestions for future improvement are also presented in this dissertation.


Neutron Generators for Analytical Purposes

Neutron Generators for Analytical Purposes
Author: International Atomic Energy Agency
Publisher: IAEA Radiation Technology Repo
Total Pages: 145
Release: 2012
Genre: Science
ISBN: 9789201251107

Download Neutron Generators for Analytical Purposes Book in PDF, ePub and Kindle

This publication addresses recent developments in neutron generator (NG) technology. It presents information on compact instruments with high neutron yield to be used for neutron activation analysis (NAA) and prompt gamma neutron activation analysis in combination with high count rate spectrometers. Traditional NGs have been shown to be effective for applications including borehole logging, homeland security, nuclear medicine and the on-line analysis of aluminium, coal and cement. Pulsed fast thermal neutron analysis, as well as tagged and timed neutron analysis, are additional techniques which can be applied using NG. Furthermore, NG can effectively be used for elemental analysis and is also effective for analysis of hidden materials by neutron radiography. Useful guidelines for developing NG based research laboratories are also provided in this publication.


Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging

Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging
Author:
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging Book in PDF, ePub and Kindle

We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T, n)4 alpha) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 muA D/T ion beam current accelerated to 80 kV. The generator utilizes a RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively-coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80percent can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results, such as the current density, atomic ion fraction, electron temperature, and electron density, from ion source testing will be discussed.


Advanced Penning-type Ion Source Development and Passive Beam Focusing Techniques for an Associated Particle Imaging Neutron Generator

Advanced Penning-type Ion Source Development and Passive Beam Focusing Techniques for an Associated Particle Imaging Neutron Generator
Author: Amy Sy
Publisher:
Total Pages: 296
Release: 2013
Genre:
ISBN:

Download Advanced Penning-type Ion Source Development and Passive Beam Focusing Techniques for an Associated Particle Imaging Neutron Generator Book in PDF, ePub and Kindle

The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrates such capabilities in the characterization of fissile material configurations and greatly benefits from improvements to existing neutron generator systems. Increased neutron yields and improved spatial resolution can enhance the capabilities of imaging methods utilizing the API technique. The work presented in this dissertation focused on the development of components for use within an API neutron generator with enhanced system spatial resolution. The major focus areas were the ion source development for plasma generation, and passive ion beam focusing techniques for the small ion beam widths necessary for the enhanced spatial resolution. The ion source development focused on exploring methods for improvement of Penning-type ion sources that are used in conventional API neutron generator systems, while the passive beam focusing techniques explored both ion beam collimation and ion guiding with tapered dielectric capillaries for reduced beam widths at the neutron production target.


Recent Advancements in X-Ray and Neutron Imaging of Dynamic Processes in Earth Sciences

Recent Advancements in X-Ray and Neutron Imaging of Dynamic Processes in Earth Sciences
Author: Lucia Mancini
Publisher: Frontiers Media SA
Total Pages: 162
Release: 2020-12-01
Genre: Science
ISBN: 2889661377

Download Recent Advancements in X-Ray and Neutron Imaging of Dynamic Processes in Earth Sciences Book in PDF, ePub and Kindle

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.


Characterization of Deuteron-Deuteron Neutron Generators

Characterization of Deuteron-Deuteron Neutron Generators
Author: Cory Scott Waltz
Publisher:
Total Pages: 111
Release: 2016
Genre:
ISBN:

Download Characterization of Deuteron-Deuteron Neutron Generators Book in PDF, ePub and Kindle

A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono-energetic 2.45 MeV neutrons at outputs of 10^8 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 10^10 n/s. Characteristics that affect the operational stability include the suppression of the target-emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values. Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil irradiations. An overview of experiments using the HFNG, including medical isotope cross section measurements, geochronology, delayed gamma measurements from uranium fission, and single event upset of cpu's is discussed. Future work should focus on the reduction of beam induced arcing between the shroud and the vacuum chamber. Investigation of insulator charge build-up, as well as electrical flash-over of insulators should be explored. The reduction of beam induced arcing will allow for larger beam currents and acceleration voltages, therefore increasing the neutron flux.


Development of a Neutron Diffraction System and Neutron Imaging System for Beamport Characterization

Development of a Neutron Diffraction System and Neutron Imaging System for Beamport Characterization
Author: Troy Casey Unruh
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Development of a Neutron Diffraction System and Neutron Imaging System for Beamport Characterization Book in PDF, ePub and Kindle

Semiconductor neutron detector design, fabrication and testing are all performed at Kansas State University (KSU). The most prevalent neutron detectors built by the KSU Semiconductor Materials And Radiological Technologies Laboratory (SMART Lab) are comprised of silicon diodes with [superscript]6LiF as a neutron converter material. Neutron response testing and calibration of the detectors is performed in a neutron detector test facility. The facility utilizes diffraction with a pyrolytic graphite (PG) monochromator to produce a diffracted neutron beam at the northwest beamport of the KSU Training Research Isotope production General Atomics (TRIGA) Mark-II nuclear reactor. A 2-D neutron beam monitor can also be used in conjunction with the test facility for active calibrations. Described in the following work are the design, construction and operation of a neutron detector test facility and a 2-D neutron detection array. The diffracted neutron beam at the detector test facility has been characterized to yield a neutron beam with an average Gaussian energy of 0.0253 eV. The diffracted beam yields a flux of 1.2x10[superscript]4 neutrons/cm[superscript]2/s at 100 kW of reactor power. The PG monochromator is diffracting on the (002) plane that has been positioned at a Bragg angle of 15.5 degrees. The 2-D neutron detection array has been characterized for uniform pixel response and uniform neutron detection efficiency. The 2-D 5x5 array of neutron detectors with a neutron detection efficiency of approximately 0.5 percent has been used as a beam monitor when performing detector testing. The amplifier circuits for the 5x5 array were designed at the KSU Electronics Design Lab (EDL) and were coupled to a LabVIEW field-programmable gate array that is read out by a custom LabVIEW virtual instrument. The virtual instrument has been calibrated to produce a pixel response that varies by less than two percent from pixel to pixel. The array has been used for imaging and active monitoring of the diffracted neutron beam at the detector test facility. The following work is part of on-going research to develop various types of solid state semiconductor neutron detectors.


The Design of a Fast Neutron Radiography System for Non-destructive Analysis of Thick, Dense Objects

The Design of a Fast Neutron Radiography System for Non-destructive Analysis of Thick, Dense Objects
Author: Alicia Lauren Swift
Publisher:
Total Pages: 568
Release: 2016
Genre: Neutron optics
ISBN:

Download The Design of a Fast Neutron Radiography System for Non-destructive Analysis of Thick, Dense Objects Book in PDF, ePub and Kindle

This dissertation describes the development of a novel time-of-flight (TOF) fast neutron radiography system, TiGReSSE ("Time Gating to Reject Scatter and Select Energy"), for non-destructive analysis of thick, dense objects, such as a spent nuclear fuel cask. Such objects create large scatter fields that mask interior flaws in an image, and are impenetrable with traditional x-ray or low-energy neutron radiography. By using a fast pulsed, high-energy monoenergetic neutron source with TiGReSSE, TOF methods may be employed to completely reject this problematic scatter. If using TOF methods with a fast pulsed, high-energy polyenergetic neutron source instead, partial scatter rejection is possible, as is the variation of image contrast by selecting the neutron interrogation energy(ies). To accomplish scatter rejection and energy selection, the system uses a fast plastic scintillator to convert neutrons to visible light, which then enter an intensified charge coupled device camera to form a radiograph. The camera shutter is opened and closed at specific times to apply TOF methods. Experiments were conducted using a deuterium-tritium generator, as well as with polyenergetic spallation neutrons in two Los Alamos Neutron Science Center accelerator flight paths. These experiments were carried out to improve system design and determine system characteristics, while demonstrating that TiGReSSE could partially reject scatter and select energy in novel neutron energy ranges up to 600 MeV (i.e., 80% of the speed of light). It was also shown that optimal neutron radiography energies vary between objects. Simulations were also conducted using Los Alamos National Laboratory's radiation transport code, MCNP6, to further support system design and characterization, modeling properties including detector efficiency, dose to radiography objects during imaging, and direct-to-scatter ratios. MCNP6 was also used to design an optimal shielding configuration for the camera. Based on all work conducted, it is recommended that a pulsed monoenergetic neutron source with energy from 10 to 14 MeV be used for scatter rejection, and that a spallation target be used to create a polyenergetic pulsed source to also enable energy selection, while being mindful that other objects may exist that require higher energy neutrons.