Characterization And Analysis Of Lithium Plating On Silicon Graphite Negative Electrodes In Lithium Ion Batteries PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Characterization And Analysis Of Lithium Plating On Silicon Graphite Negative Electrodes In Lithium Ion Batteries PDF full book. Access full book title Characterization And Analysis Of Lithium Plating On Silicon Graphite Negative Electrodes In Lithium Ion Batteries.

Detection and characterization of Lithium plating

Detection and characterization of Lithium plating
Author: Long, Julian
Publisher: Universitätsverlag der TU Berlin
Total Pages: 260
Release: 2023-05-31
Genre: Technology & Engineering
ISBN: 3798332789

Download Detection and characterization of Lithium plating Book in PDF, ePub and Kindle

Lithium plating is not only the most severe ageing mechanism in lithium-ion batteries (LIBs) but also becoming more and more important due the increasing presence of electric vehicles (EVs). In EVs the extreme conditions causing lithium plating, like very high charging currents and low environment temperatures, are much more prevalent than in consumer electronics. Due to the high number of factors that influence the plating process, ranging from the cell geometry to the chemical composition of the electrolyte, a deeper understanding of the plating process is still lacking. Without this knowledge it is hard to design cells in a plating resistant way, or to operate cells under the ideal conditions to minimize plating. This thesis aims at showing different methods to investigate the plating process on three different levels. The first method is on the cell level, investigating the behaviour of the whole cell during plating. It contains the analysis of the voltage and current profiles that show an atypical behaviour during plating. The focus of the analysis is on the current profile of the constant voltage (CV) phase during charging under low temperature conditions leading to plating. This current profile can be fitted with the Johnson-Mehl-Avrami-Kolmogorov (JMAK) function that describes the electrochemical deposition process of a metallic species on a surface. The resulting fitting parameters can be utilized to characterize the plating behaviour of the cell as well as better estimate the amount of plated lithium than commonly used methods. It can also potentially predict the future safety risk due to dendrite formation. In the second part the chemical composition of the surface electrolyte interface (SEI) is investigated using X-ray photoelectron spectroscopy (XPS). The composition as well as the mechanical properties of the SEI are strongly influencing the plating process and preliminary work has shown that plating is also changing the morphology of the SEI and increasing its thickness drastically. Cells under different conditions (plated, charged and discharged) as well as cells of different manufacturers have been probed using XPS. During the measurements an unwanted side effect of the experimental setup was discovered that lead to a migration of lithium to the surface of the sample and was distorting the measurement results. Regardless of the effect, it was possible to see that the SEI can have a very different composition in cells of different manufacturers and that plating not only changes the morphology but also the composition of the SEI. The unwanted side effect could furthermore be utilized to identify samples that were plated recently and could be used in further more controlled experiments to localize lithium depositions on plated samples. In the last part the particle structure of the anode surface of cells of different manufacturers was investigated using a watershed particle detection algorithm on laser scanning microscopy (LSM) images of the anode surfaces. The distributions of the particle sizes have then been compared to the capacity loss in plated cells. It was shown that the capacity loss correlates with parameters extracted from the particle size distributions. It is however necessary to create more data to verify this correlation. In summary this thesis utilized new methods to detect or characterize plating on different levels of magnification, from the cell level to the chemical composition. New approaches were found to predict a cells future plating behaviour, spatially localize plated areas on the anode and design cells in a plating resistant way. Lithium Plating ist nicht nur der Alterungsmechanismus in Lithium-Ionen-Batterien mit dem größten Kapazitätsverlust, sondern wird auch im Zuge der voranschreitenden Elektrifizierung des Personenverkehrs immer wichtiger. In Elektrofahrzeugen finden sich die extremen Zustände, wie niedrige Ladetemperaturen und hohe Ladestrome, unter denen Plating auftritt, deutlich häufiger als in Unterhaltungstechnik. Durch die Vielzahl von Parametern, von der Zellgeometrie bis hin zur Elektrolyzusammensetzung, die Plating beeinflussen, fehlt immer noch ein tieferes Verständnis des Plating-Prozesses. Ohne dieses Wissen ist es schwer, Zellen zu designen, die resistent gegen Plating sind oder Zellen unter optimalen Bedingungen zu betreiben um Plating zu minimieren. Das Ziel dieser Arbeit ist es, verschiedene Methoden aufzuzeigen, die die Untersuchung von Plating auf drei verschiedenen Ebenen ermöglichen. Die erste Methode untersucht das Gesamtverhalten der Zelle auf Zellebene. Hierbei wird das atypische Verhalten der Strom- und Spannunsprofile wahrend des Plating-Vorgangs analysiert. Der Fokus liegt dabei auf der Untersuchung der Konstantstrom-Phase bei niedrigen Temperaturen während der Ladung. Das Stromprofil dieser Phase kann mit der JMAK-Funktion gefittet werden, welche die elektrochemische Abscheidung eines Metalls auf einer Oberfläche beschreibt. Die resultierenden Fitting-Parameter können genutzt werden, um das Plating-Verhalten vorherzusagen und sind gleichzeitig eine bessere Abschätzung fur die Menge an geplatetem Lithium im Vergleich zu gängigen Methoden. Die Ergebnisse konnten außerdem helfen das Sicherheitsrisiko der Zelle bei Dendritenbildung vorherzusagen. Im zweiten Teil wird die chemische Zusammensetzung der SEI mittels XPS untersucht. Die Zusammensetzung, wie auch die mechanischen Eigenschaften der SEI, beeinflussen den Plating-Prozess stark und es wurde in vorhergehenden Arbeiten gezeigt, dass Plating auch die Morphologie und Dicke der SEI drastisch verändern kann. Zellen in verschiedenen Zuständen (geplatet, geladen, entladen), sowie Zellen verschiedener Hersteller wurden mit XPS untersucht. Während der Messungen wurde ein ungewollter Nebeneffekt des Messaufbaus entdeckt, der zu einer Migration von Lithium an die Oberflache der Proben geführt und die Messergebnisse verfälscht hat. Unabhängig von diesem Effekt war es dennoch möglich, zu zeigen, dass die SEI in Zellen verschiedener Hersteller stark unterschiedliche Zusammensetzungen haben kann und dass Plating nicht nur die Morphologie der SEI beeinflusst, sondern auch die chemische Zusammensetzung. Weiterhin konnte der ungewollte Nebeneffekt verwendet werden, um Proben zu identifizieren, die vor kurzem geplatet wurden und konnte in zukünftigen Arbeiten verwendet werden, um lokalisiert Lithium-Ablagerungen auf geplateten Proben zu identifizieren. Im letzten Teil wurde die Partikelstruktur der Anoden von Zellen verschiedener Zellhersteller mit Hilfe einer watershed-Partikeldetektion an LSM-Bildern untersucht. Die Verteilung der Partikelgrößen wurde mit dem Kapazitätsverlust gleicher Zelle durch Plating verglichen. Es wurde gezeigt, dass der Kapazitätsverlust mit Parametern, die aus den Partikelverteilungen extrahiert wurden, korreliert. Ein größerer Datensatz ist jedoch notwendig, um diese Ergebnisse zu validieren. Zusammenfassend hat diese Arbeit verschiedene neue Methoden aufgezeigt, um Plating auf verschiedenen Vergrößerungsebenen zu detektieren und zu charakterisieren. Neue Ansätze wurden gefunden, um das Platingverhalten von Zellen vorherzusagen, lokalisiertes Lithium auf der Oberfläche zu detektieren und Zellen platingresistenter designen zu können.


Degradation of Carbon Negative Electrodes in Lithium-ion Batteries

Degradation of Carbon Negative Electrodes in Lithium-ion Batteries
Author: Peter Magdy Attia
Publisher:
Total Pages:
Release: 2019
Genre:
ISBN:

Download Degradation of Carbon Negative Electrodes in Lithium-ion Batteries Book in PDF, ePub and Kindle

The graphitic negative electrode is widely used in today's commercial lithium-ion batteries. However, its lifetime is limited by a number of degradation modes, particularly growth of the solid electrolyte interphase (SEI), lithium plating, and electrode inactivation. Two major challenges to better batteries are the range of length scales (nanometers to centimeters) over which degradation modes occur, as well as slow development times. In this thesis, I overcome these challenges by studying the degradation of carbon electrodes in both model systems and commercial devices and by using machine learning methods for accelerated battery optimization. First, I study SEI growth on carbon black via microscopy, electrochemistry, and modeling. I first use cryogenic transmission electron microscopy (cryo-EM) to image the SEI on carbon black and track its evolution during cycling. I observe an evolution of inorganic components in thin (~2 nm), primary SEI directly interfaced to the carbon black, as well as deposits of SEI that span hundreds of nanometers. I then electrochemically measure the dependence of SEI growth on potential, current magnitude, and current direction during galvanostatic cycling. I find that SEI growth strongly depends on all three parameters; most notably, SEI growth rates increase with nominal C rate and are significantly higher on lithiation than on delithiation. Finally, I model the SEI as a mixed ionic-electronic conductor, where the ionic concentration modulates the electronic conductivity. This model can account for the previously observed directional dependence. This work illustrates the MIEC-like nature of the SEI on carbonaceous anodes and illustrates the strong coupling between charge storage (i.e. intercalation) and SEI growth. Second, I characterize the cell-level degradation of commercial lithium iron phosphate (LFP)/graphite cylindrical cells during fast charging. I find that the graphite electrode exhibits significant and highly heterogeneous degradation during fast charging, with large ionically inactive regions located near the electrode tab. This ionic inactivation of the electrode appears to occur via large-scale SEI growth, preceding more conventional fast charging degradation modes such as lithium plating. Third, I optimize a six-step fast-charging protocol that achieves 80% state of charge in ten minutes on commercial LFP/graphite cylindrical cells. I first develop a machine learning algorithm that uses cycling data from the first 100 cycles to predict cycle lives that reach up to 2300 cycles with ~9% error. Then, I use an optimal experimental design methodology for fast-charging protocol optimization, with two key elements to reduce the optimization cost: early prediction of failure, which reduces the cost per experiment, and adaptive Bayesian multi-armed bandits, which reduces the number of experiments required. The fast charging protocols identified by this algorithm are unexpected given the battery literature. The combination of closed-loop optimization and early prediction illustrates the power of data-driven methods to accelerate the pace of scientific discovery.


Batteries for Portable Devices

Batteries for Portable Devices
Author: Gianfranco Pistoia
Publisher: Elsevier
Total Pages: 309
Release: 2005-01-25
Genre: Science
ISBN: 0080455565

Download Batteries for Portable Devices Book in PDF, ePub and Kindle

Batteries for Portable Devices provides a comprehensive overview of all batteries used in portable electric and electronic, as well as medical devices. These range from the cellular phone to portable CD and cardiac pacemakers to remote micro-sensors. The author looks at the behaviour of batteries in the conditions encountered in the above applications. Information on the performance of the most recent commercial batteries are graphically illustrated and comparisons are made. This easy-to-read book also contains useful information on topics rarely discussed in the field, such as battery collection, recycling and market trends. * Contains an extensive bibliography* Includes rarely discussed topics, such as battery collection and recycling* Well illustrated and easy to read


Development of Silicon-based Anodes and In-situ Characterization Techniques for Lithium Ion Batteries

Development of Silicon-based Anodes and In-situ Characterization Techniques for Lithium Ion Batteries
Author: Jinho Yang
Publisher:
Total Pages: 109
Release: 2014
Genre: Chemical engineering
ISBN:

Download Development of Silicon-based Anodes and In-situ Characterization Techniques for Lithium Ion Batteries Book in PDF, ePub and Kindle

Development of lithium ion batteries (LIBs) with higher capacity has been booming worldwide, as growing concerns about environmental issues and increasing petroleum costs. The demands for the LIBs include high energy and power densities, and better cyclic stability in order to meet a wide range of applications, such as portable devices and electric vehicles. Silicon has recently been explored as a promising anode material due to its low discharge potential (0.4 V) and high specific capacity (4200 mAh gsuper-1/super). The capacity of silicon potentially exceeds more than 10 times of the conventional graphite anode (372 mAh gsuper-1/super). However, the silicon anode experiences huge volume expansion (400%) and contraction during electrochemical cycles, resulting in pulverization and disintegration of the active material. For the improvement of the battery performance, understanding of the failure mechanism associated with the stress evolution during cycling is critical. This study aims (1) to develop high performance anode materials and (2) to analyze the mechanism of the capacity fading using a novel in-situ characterization technique in order to optimize the electrode design for better operation of the battery. The silicon nitride thin film anodes were investigated for the improvement of cycling performance. In addition, the rate performance was enhanced by controlling the parameters in film deposition. Si-based thin films undergo large stresses induced by the volume changes, which results in material degradation and capacity fading. Hence, the in-situ measurement of the electrochemical processes is critical to clarify how the electrode degrades with time under cycling. For the in-situ measurement, a white light interferometry (WLI) and laser vibrometer were used to gather quantitative data. Amorphous silicon (italica


Lithium-ion Batteries

Lithium-ion Batteries
Author: Perla B. Balbuena
Publisher: World Scientific
Total Pages: 424
Release: 2004
Genre: Science
ISBN: 1860943624

Download Lithium-ion Batteries Book in PDF, ePub and Kindle

This invaluable book focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electromechanical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.