Causal Inference And Discovery In Python PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Causal Inference And Discovery In Python PDF full book. Access full book title Causal Inference And Discovery In Python.

Causal Inference and Discovery in Python

Causal Inference and Discovery in Python
Author: Aleksander Molak
Publisher:
Total Pages: 0
Release: 2023-05-31
Genre:
ISBN: 9781804612989

Download Causal Inference and Discovery in Python Book in PDF, ePub and Kindle

Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data Purchase of the print or Kindle book includes a free PDF eBook Key Features: Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methods Book Description: Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality. You'll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you'll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you'll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You'll further explore the mechanics of how "causes leave traces" and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more. What You Will Learn: Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefit Who this book is for: This book is for machine learning engineers, data scientists, and machine learning researchers looking to extend their data science toolkit and explore causal machine learning. It will also help developers familiar with causality who have worked in another technology and want to switch to Python, and data scientists with a history of working with traditional causality who want to learn causal machine learning. It's also a must-read for tech-savvy entrepreneurs looking to build a competitive edge for their products and go beyond the limitations of traditional machine learning.


Causal Inference in Python

Causal Inference in Python
Author: Matheus Facure
Publisher: "O'Reilly Media, Inc."
Total Pages: 409
Release: 2023-07-14
Genre: Business & Economics
ISBN: 1098140222

Download Causal Inference in Python Book in PDF, ePub and Kindle

How many buyers will an additional dollar of online marketing bring in? Which customers will only buy when given a discount coupon? How do you establish an optimal pricing strategy? The best way to determine how the levers at our disposal affect the business metrics we want to drive is through causal inference. In this book, author Matheus Facure, senior data scientist at Nubank, explains the largely untapped potential of causal inference for estimating impacts and effects. Managers, data scientists, and business analysts will learn classical causal inference methods like randomized control trials (A/B tests), linear regression, propensity score, synthetic controls, and difference-in-differences. Each method is accompanied by an application in the industry to serve as a grounding example. With this book, you will: Learn how to use basic concepts of causal inference Frame a business problem as a causal inference problem Understand how bias gets in the way of causal inference Learn how causal effects can differ from person to person Use repeated observations of the same customers across time to adjust for biases Understand how causal effects differ across geographic locations Examine noncompliance bias and effect dilution


Causal Inference and Discovery in Python

Causal Inference and Discovery in Python
Author: Aleksander Molak
Publisher: Packt Publishing Ltd
Total Pages: 456
Release: 2023-05-31
Genre: Computers
ISBN: 1804611735

Download Causal Inference and Discovery in Python Book in PDF, ePub and Kindle

Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data Purchase of the print or Kindle book includes a free PDF eBook Key Features Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methods Book DescriptionCausal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality. You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more. By the end of this book, you will be able to build your own models for causal inference and discovery using statistical and machine learning techniques as well as perform basic project assessment.What you will learn Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefit Who this book is for This book is for machine learning engineers, researchers, and data scientists looking to extend their toolkit and explore causal machine learning. It will also help people who’ve worked with causality using other programming languages and now want to switch to Python, those who worked with traditional causal inference and want to learn about causal machine learning, and tech-savvy entrepreneurs who want to go beyond the limitations of traditional ML. You are expected to have basic knowledge of Python and Python scientific libraries along with knowledge of basic probability and statistics.


Applied Causal Inference

Applied Causal Inference
Author: Uday Kamath
Publisher: Independently Published
Total Pages: 0
Release: 2023-10-06
Genre:
ISBN:

Download Applied Causal Inference Book in PDF, ePub and Kindle

Recent advancements in causal inference have made it possible to gain profound insight about our world and the complex systems which operate in it. While industry professionals and academics in every domain ask questions of their data, traditional statistical methods often fall short of providing conclusive answers. This is where causality can help. This book gives readers the tools necessary to use causal inference in applied settings by building from theoretical foundations all the way to hands-on case studies in Python. We wrote this book primarily for the practitioner who knows how to work with data but may not be familiar with causal inference concepts, or how to apply those concepts to real-world problems. Part 1 of the book builds from the basic principles of causal inference to the estimation process and into causal discovery, with accompanying exercises and case studies to reinforce concepts. In Parts 2 and 3, we go deeper into cutting-edge applications of causality in machine learning domains, including computer vision, natural language processing, reinforcement learning, and model fairness. The combination of these focuses makes this book a perfect entrypoint into the world of causality for any machine learning professional.


Elements of Causal Inference

Elements of Causal Inference
Author: Jonas Peters
Publisher: MIT Press
Total Pages: 289
Release: 2017-11-29
Genre: Computers
ISBN: 0262037319

Download Elements of Causal Inference Book in PDF, ePub and Kindle

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.


Causal Inference

Causal Inference
Author: Scott Cunningham
Publisher: Yale University Press
Total Pages: 585
Release: 2021-01-26
Genre: Business & Economics
ISBN: 0300255888

Download Causal Inference Book in PDF, ePub and Kindle

An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.


Fundamentals of Causal Inference

Fundamentals of Causal Inference
Author: Babette A. Brumback
Publisher: CRC Press
Total Pages: 248
Release: 2021-11-10
Genre: Mathematics
ISBN: 100047030X

Download Fundamentals of Causal Inference Book in PDF, ePub and Kindle

One of the primary motivations for clinical trials and observational studies of humans is to infer cause and effect. Disentangling causation from confounding is of utmost importance. Fundamentals of Causal Inference explains and relates different methods of confounding adjustment in terms of potential outcomes and graphical models, including standardization, difference-in-differences estimation, the front-door method, instrumental variables estimation, and propensity score methods. It also covers effect-measure modification, precision variables, mediation analyses, and time-dependent confounding. Several real data examples, simulation studies, and analyses using R motivate the methods throughout. The book assumes familiarity with basic statistics and probability, regression, and R and is suitable for seniors or graduate students in statistics, biostatistics, and data science as well as PhD students in a wide variety of other disciplines, including epidemiology, pharmacy, the health sciences, education, and the social, economic, and behavioral sciences. Beginning with a brief history and a review of essential elements of probability and statistics, a unique feature of the book is its focus on real and simulated datasets with all binary variables to reduce complex methods down to their fundamentals. Calculus is not required, but a willingness to tackle mathematical notation, difficult concepts, and intricate logical arguments is essential. While many real data examples are included, the book also features the Double What-If Study, based on simulated data with known causal mechanisms, in the belief that the methods are best understood in circumstances where they are known to either succeed or fail. Datasets, R code, and solutions to odd-numbered exercises are available at www.routledge.com.


Plug-in Estimation Approaches to Causal Inference and Discovery

Plug-in Estimation Approaches to Causal Inference and Discovery
Author: Gabriel Ruiz
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Plug-in Estimation Approaches to Causal Inference and Discovery Book in PDF, ePub and Kindle

This dissertation covers techniques for the estimation of parameters related to making causal inferences and discoveries. Both for its generality and its simplicity, the focus is in the plug-in estimation of these parameters, whereby the statistical estimator(s) of a parameter(s) is plugged in to obtain an estimator for another, possibly more difficult to estimate, parameter. In particular, the following is addressed. In Chapter 2, we focus on causal discovery, the learning of causality in a data mining scenario. Causal discovery has been of strong scientific and theoretical interest as a starting point to identify ``what causes what?'' Contingent on assumptions and a proper learning algorithm, it is sometimes possible to identify and accurately estimate a causal directed acyclic graph (DAG), as opposed to a Markov equivalence class of graphs that gives ambiguity of causal directions. The focus of this chapter is in highlighting the identifiability and estimation of DAGs with general error distributions through a general sequential sorting procedure that orders variables one at a time, starting at root nodes, followed by children of the root nodes, and so on until completion. We demonstrate a novel application of this general approach to estimate the topological ordering of a DAG. At each step of the procedure, only simple likelihood ratio scores are calculated on regression residuals to decide the next node to append to the current partial ordering. The computational complexity of our algorithm on a p-node problem is O(pd), where d is the maximum neighborhood size. Under mild assumptions, the population version of our procedure provably identifies a true ordering of the underlying DAG. We provide extensive numerical evidence to demonstrate that this sequential procedure scales to possibly thousands of nodes and works well for high-dimensional data. We accompany these numerical experiments with an application to a single-cell gene expression dataset. The focus of the Chapter 3 is the Linear Non-Gaussian Acyclic Model (LiNGAM). Compared to what has been done, we present a novel estimation approach which involves specifying a parametric objective function and arguing when our sequential optimization approach will be statistically consistent, including if the dimension of underlying graph diverges, and when we can provide finite sample guarantees on its accuracy. This involves (1) defining well our target parameter: an ordering of the Directed acyclic graph (DAG)'s vertices such that parents always precede children; and (2) translating deviation bounds on the parameters for the corresponding structural equation model (SEM) into a statement about our topological order estimate's deviation from a true topological ordering. We also incorporate the use of a priori known neighborhood sets to our theoretical results. In Chapter 4, we assume that the underlying causal structure is known, for example, due to the successful application of a causal discovery algorithm similar to those in the previous two chapters. This grants us the identifiability of parameters on the distribution of so-called potential outcomes, the key random variables we would like to make causal claims about. The premise of this chapter, in a vein similar to predictive inference with quantile regression, is that observations may lie far away from their conditional expectation. In the context of causal inference, due to the missing-ness of one outcome, it is difficult to check whether an individual's treatment effect lies close to its prediction given by the estimated Average Treatment Effect (ATE) or Conditional Average Treatment Effect (CATE). With the aim of augmenting the inference with these estimands in practice, we further study an existing distribution-free framework for the plug-in estimation of bounds on the probability an individual benefits from treatment (PIBT), a generally inestimable quantity that would concisely summarize an intervention's efficacy if it could be known. Given the innate uncertainty in the target population-level bounds on PIBT, we seek to better understand the margin of error for the estimation of these target parameters in order to help discern whether estimated bounds on treatment efficacy are tight (or wide) due to random chance or not. In particular, we present non-asymptotic guarantees to the estimation of bounds on marginal PIBT for a randomized experiment setting. We also derive new non-asymptotic results for the case where we would like to understand heterogeneity in PIBT across strata of pre-treatment covariates, with one of our main results in this setting making strategic use of regression residuals. These results, especially those in the randomized experiment case, can be used to help with formal statistical power analyses and frequentist confidence statements for settings where we are interested in inferring PIBT through the target bounds under minimal parametric assumptions. Our results extend to both real-valued and binary-valued outcomes, and these results can also instead be applied to reason about whether an individual is likely to be harmed by an intervention.


Interpretable Machine Learning with Python

Interpretable Machine Learning with Python
Author: Serg Masís
Publisher: Packt Publishing Ltd
Total Pages: 607
Release: 2023-10-31
Genre: Computers
ISBN: 1803243627

Download Interpretable Machine Learning with Python Book in PDF, ePub and Kindle

A deep dive into the key aspects and challenges of machine learning interpretability using a comprehensive toolkit, including SHAP, feature importance, and causal inference, to build fairer, safer, and more reliable models. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Interpret real-world data, including cardiovascular disease data and the COMPAS recidivism scores Build your interpretability toolkit with global, local, model-agnostic, and model-specific methods Analyze and extract insights from complex models from CNNs to BERT to time series models Book DescriptionInterpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models. Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps. In addition to the step-by-step code, you’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. By the end of the book, you’ll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.What you will learn Progress from basic to advanced techniques, such as causal inference and quantifying uncertainty Build your skillset from analyzing linear and logistic models to complex ones, such as CatBoost, CNNs, and NLP transformers Use monotonic and interaction constraints to make fairer and safer models Understand how to mitigate the influence of bias in datasets Leverage sensitivity analysis factor prioritization and factor fixing for any model Discover how to make models more reliable with adversarial robustness Who this book is for This book is for data scientists, machine learning developers, machine learning engineers, MLOps engineers, and data stewards who have an increasingly critical responsibility to explain how the artificial intelligence systems they develop work, their impact on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a good grasp of the Python programming language is needed to implement the examples.