Capacitive Silicon Resonators PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Capacitive Silicon Resonators PDF full book. Access full book title Capacitive Silicon Resonators.

Capacitive Silicon Resonators

Capacitive Silicon Resonators
Author: Nguyen Van Toan
Publisher: CRC Press
Total Pages: 170
Release: 2019-07-10
Genre: Technology & Engineering
ISBN: 0429560990

Download Capacitive Silicon Resonators Book in PDF, ePub and Kindle

Microfabricated resonators play an essential role in a variety of applications, including mass sensing, timing reference applications, and filtering applications. Many transduction mechanisms including piezoelectric, piezoresistive, and capacitive mechanisms, have been studied to induce and detect the motion of resonators. This book is meant to introduce and suggest several technological approaches together with design considerations for performance enhancement of capacitive silicon resonators, and will be useful for those working in field of micro and nanotechnology. Features Introduces and suggests several technological approaches together with design considerations for performance enhancement of capacitive silicon resonators Provides information on the various fabrication technologies and design considerations that can be employed to improve the performance capacitive silicon resonator which is one of the promising options to replace the quartz crystal resonator. Discusses several technological approaches including hermetic packaging based on the LTCC substrate, deep reactive ion etching, neutral beam etching technology, and metal-assisted chemical etching, as well as design considerations for mechanically coupled, selective vibration of high-order mode, movable electrode structures, and piezoresistive heat engines were investigated to achieve small motional resistance, low insertion loss, and high quality factor. Focusses on a capacitive sensing method based on the measurement of the change in capacitance between a sensing electrode and the resonant body. Reviews recent progress in performance enhancement methods for capacitive silicon resonator, which are mainly based on the works of the authors.


Capacitive Silicon Resonators

Capacitive Silicon Resonators
Author: Nguyen Van Toan
Publisher: CRC Press
Total Pages: 177
Release: 2019-07-10
Genre: Technology & Engineering
ISBN: 0429556527

Download Capacitive Silicon Resonators Book in PDF, ePub and Kindle

Microfabricated resonators play an essential role in a variety of applications, including mass sensing, timing reference applications, and filtering applications. Many transduction mechanisms including piezoelectric, piezoresistive, and capacitive mechanisms, have been studied to induce and detect the motion of resonators. This book is meant to introduce and suggest several technological approaches together with design considerations for performance enhancement of capacitive silicon resonators, and will be useful for those working in field of micro and nanotechnology. Features Introduces and suggests several technological approaches together with design considerations for performance enhancement of capacitive silicon resonators Provides information on the various fabrication technologies and design considerations that can be employed to improve the performance capacitive silicon resonator which is one of the promising options to replace the quartz crystal resonator. Discusses several technological approaches including hermetic packaging based on the LTCC substrate, deep reactive ion etching, neutral beam etching technology, and metal-assisted chemical etching, as well as design considerations for mechanically coupled, selective vibration of high-order mode, movable electrode structures, and piezoresistive heat engines were investigated to achieve small motional resistance, low insertion loss, and high quality factor. Focusses on a capacitive sensing method based on the measurement of the change in capacitance between a sensing electrode and the resonant body. Reviews recent progress in performance enhancement methods for capacitive silicon resonator, which are mainly based on the works of the authors.


High Frequency Capacitive Single Crystal Silicon Resonators and Coupled Resonator Systems

High Frequency Capacitive Single Crystal Silicon Resonators and Coupled Resonator Systems
Author: Siavash Pourkamali
Publisher:
Total Pages:
Release: 2006
Genre: Electric resonators
ISBN:

Download High Frequency Capacitive Single Crystal Silicon Resonators and Coupled Resonator Systems Book in PDF, ePub and Kindle

The objective of the work presented in this thesis is to implement high-Q silicon capacitive micromechanical resonators operating in the HF, VHF and UHF frequency bands. Several variations of a fully silicon-based bulk micromachining fabrication process referred to as HARPSS have been developed, characterized and optimized to overcome most of the challenges facing application of such devices as manufacturable electronic components. Several micromechanical structures for implementation of high performance capacitive silicon resonators covering various frequency ranges have been developed under this work. Design criteria and electromechanical modeling of such devices is presented. Under this work, HF and VHF resonators with quality factors in the tens of thousands and RF-compatible equivalent electrical impedances have been implemented successfully. Resonance frequencies in the GHz range with quality factors of a few thousands and lowest motional impedances reported for capacitive resonators to date have been achieved. Several resonator coupling techniques for implementation of higher order resonant systems with possibility of extension to highly selective bandpass filters have been investigated and practically demonstrated. Finally, a wafer-level vacuum sealing technique applicable to such resonators has been developed and its reliability and hermeticity is characterized.


Advances in Glass Science and Technology

Advances in Glass Science and Technology
Author: Vincenzo Maria Sglavo
Publisher: BoD – Books on Demand
Total Pages: 242
Release: 2018-06-06
Genre: Technology & Engineering
ISBN: 1789231760

Download Advances in Glass Science and Technology Book in PDF, ePub and Kindle

In this book, some recent advances in glass science and technology are collected. In the first part, the structure and crystallization of innovative glass compositions are analysed. In the second part, innovative applications are described from the use of glass in optical devices and lasers to fibres in composites, micropatterned components in sensors and microdevices, beads in building walls and sealing in solid oxide fuel cells.


Resonant MEMS

Resonant MEMS
Author: Oliver Brand
Publisher: John Wiley & Sons
Total Pages: 512
Release: 2015-04-28
Genre: Technology & Engineering
ISBN: 3527676368

Download Resonant MEMS Book in PDF, ePub and Kindle

Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.


Compensation and Trimming for Silicon Micromechanical Resonators and Resonator Arrays for Timing and Spectral Processing

Compensation and Trimming for Silicon Micromechanical Resonators and Resonator Arrays for Timing and Spectral Processing
Author: Ashwin Kumar Samarao
Publisher:
Total Pages:
Release: 2011
Genre: Microelectromechanical systems
ISBN:

Download Compensation and Trimming for Silicon Micromechanical Resonators and Resonator Arrays for Timing and Spectral Processing Book in PDF, ePub and Kindle

This dissertation reports very novel solutions for the trimming and compensation of various parameters of silicon micromechanical resonators and resonator-arrays. Post-fabrication trimming of resonance frequency to a target value is facilitated by diffusing in a deposited thin metal layer into a Joule-heated silicon resonator. Up to ~400 kHz of trimming-up and trimming-down in a 100 MHz Silicon Bulk Acoustic Resonators (SiBARs) are demonstrated via gold and aluminum diffusion respectively. The dependence of the trimming range on the duration of Joule heating and value of current passed are presented and the possibility of extending the trimming range up to ~4 MHz is demonstrated. Passive temperature compensation techniques are developed to drastically reduce the temperature coefficient of frequency (TCF) of silicon resonators. The dependence of TCF on the charge carriers in silicon are extensively studied and exploited for the very first time to achieve temperature compensation. A charge surplus via degenerate doping using boron and aluminum is shown to reduce a starting TCF of -30 ppm/©3¡2â2́Ơš©30́(©2°C to -1.5 ppm/©3¡2â2́Ơš©30́(©2°C while a charge depletion effected by creating multiple pn-junctions reduces the TCF to -3 ppm/©3¡2â2́Ơš©30́(©2°C. Further, shear acoustic waves in silicon microresonators have also been identified to effect a TCF reduction and have been excited in a concave SiBAR (or CBAR) to exhibit a TCF that is 15 ppm/©3¡2â2́Ơš©30́(©2°C lesser than that of a conventional rectangular SiBAR. The study on quality factor (Q) sensitivity to the various crystallographic axis of transduction in silicon resonators show that the non-repeatability of Q across various fabrication batches are due to the minor angular misalignment of ©3¡2©2℗Ø©3℗Øâ0́(℗Ơ©2°©30́(©2℗Þ 0.5©3¡2â2́Ơš©30́(©2° during the photolithography processes. Preferred axes of transduction for minimal misalignment sensitivity are identified and novel low-loss resonator-array type performances are also reported from a single resonator while transduced along certain specific crystallographic axes. Details are presented on an unprecedented new technique to create and fill charge traps on the silicon resonator which allows the operation of the capacitive SiBARs without the application of any polarization voltages (Vp) for the first time, making them very attractive candidates for ultra-low-power oscillator and sensor applications. Finally, a fabrication process that integrates both the capacitive and piezoelectric actuation/sensing schemes in microresonators is developed and is shown to compensate for the parasitics in capacitive silicon resonators while maintaining their high-Q.


Micro-Resonators: The Quest for Superior Performance

Micro-Resonators: The Quest for Superior Performance
Author: Reza Abdolvand
Publisher: MDPI
Total Pages: 147
Release: 2019-02-15
Genre:
ISBN: 3038976261

Download Micro-Resonators: The Quest for Superior Performance Book in PDF, ePub and Kindle

This book is a printed edition of the Special Issue "Micro-Resonators: The Quest for Superior Performance" that was published in Micromachines


Piezoelectric MEMS Resonators

Piezoelectric MEMS Resonators
Author: Harmeet Bhugra
Publisher: Springer
Total Pages: 423
Release: 2017-01-09
Genre: Technology & Engineering
ISBN: 3319286889

Download Piezoelectric MEMS Resonators Book in PDF, ePub and Kindle

This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.


Microelectronics to Nanoelectronics

Microelectronics to Nanoelectronics
Author: Anupama B. Kaul
Publisher: CRC Press
Total Pages: 467
Release: 2017-12-19
Genre: Science
ISBN: 1351832387

Download Microelectronics to Nanoelectronics Book in PDF, ePub and Kindle

Composed of contributions from top experts, Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability offers a detailed overview of important recent scientific and technological developments in the rapidly evolving nanoelectronics arena. Under the editorial guidance and technical expertise of noted materials scientist Anupama B. Kaul of California Institute of Technology’s Jet Propulsion Lab, this book captures the ascent of microelectronics into the nanoscale realm. It addresses a wide variety of important scientific and technological issues in nanoelectronics research and development. The book also showcases some key application areas of micro-electro-mechanical-systems (MEMS) that have reached the commercial realm. Capitalizing on Dr. Kaul’s considerable technical experience with micro- and nanotechnologies and her extensive research in prestigious academic and industrial labs, the book offers a fresh perspective on application-driven research in micro- and nanoelectronics, including MEMS. Chapters explore how rapid developments in this area are transitioning from the lab to the market, where new and exciting materials, devices, and manufacturing technologies are revolutionizing the electronics industry. Although many micro- and nanotechnologies still face major scientific and technological challenges and remain within the realm of academic research labs, rapid advances in this area have led to the recent emergence of new applications and markets. This handbook encapsulates that exciting recent progress by providing high-quality content contributed by international experts from academia, leading industrial institutions—such as Hewlett-Packard—and government laboratories including the U.S. Department of Energy’s Sandia National Laboratory. Offering something for everyone, from students to scientists to entrepreneurs, this book showcases the broad spectrum of cutting-edge technologies that show significant promise for electronics and related applications in which nanotechnology plays a key role.