Calibration Of Stochastic Volatility Models On A Multi Core Cpu Cluster PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Calibration Of Stochastic Volatility Models On A Multi Core Cpu Cluster PDF full book. Access full book title Calibration Of Stochastic Volatility Models On A Multi Core Cpu Cluster.

Calibration of Stochastic Volatility Models on a Multi-Core CPU Cluster

Calibration of Stochastic Volatility Models on a Multi-Core CPU Cluster
Author: Matthew Francis Dixon
Publisher:
Total Pages: 7
Release: 2013
Genre:
ISBN:

Download Calibration of Stochastic Volatility Models on a Multi-Core CPU Cluster Book in PDF, ePub and Kindle

Low-latency real-time option analytics feeds provide tick-by-tick implied volatilities and greeks based on exchange data. In order for the Black-Scholes implied volatility surface to exhibit the empirically observed skew or smile, a stochastic volatility model can be used to compute the option greeks. Because the European price under many stochastic volatility models only exists in semi-analytic form, frequent robust calibration of the model is computationally prohibitive. This paper explores three parallelization approaches for calibrating stochastic volatility models deployed on a multicore CPU cluster. The contribution of this paper is to provide benchmarks demonstrating hybrid shared and distributed memory parallelization techniques using Python packages for robust calibration of stochastic volatility models. The focus here will be on the Heston and Bates models, but the results in this paper generalize to any of the exponential Levy models incorporating stochastic volatility and jumps and whose characteristic function can be expressed in closed form. We evaluated the performance for our implementation on a cluster of 32 dual socket Dell PowerEdge R410 nodes providing 256 cores in total. Using distributed memory parallelization, we obtain a speedup of up to 139x against the sequential version of the calibration error function evaluation and reduce the overall time taken to calibrate a chain of 1024 SPX options by a factor of 37x.


A Portable and Fast Stochastic Volatility Model Calibration Using Multi and Many-Core Processors

A Portable and Fast Stochastic Volatility Model Calibration Using Multi and Many-Core Processors
Author: Matthew Francis Dixon
Publisher:
Total Pages: 6
Release: 2014
Genre:
ISBN:

Download A Portable and Fast Stochastic Volatility Model Calibration Using Multi and Many-Core Processors Book in PDF, ePub and Kindle

Financial markets change precipitously and on-demand pricing and risk models must be constantly recalibrated to reduce risk. However, certain classes of models are computationally intensive to robustly calibrate to intraday prices- stochastic volatility models being an archetypal example due to the non-convexity of the objective function. In order to accelerate this procedure through parallel implementation, financial application developers are faced with an ever growing plethora of low-level high-performance computing frameworks such as OpenMP, OpenCL, CUDA, or SIMD intrinsics, and forced to make a trade-off between performance versus the portability, flexibility and modularity of the code required to facilitate rapid in-house model development and productionization.This paper describes the acceleration of stochastic volatility model calibration on multi-core CPUs and GPUs using the Xcelerit platform. By adopting a simple dataflow programming model, the Xcelerit platform enables the application developer to write sequential, high-level C code, without concern for low-level high-performance computing frameworks. This platform provides the portability, flexibility and modularity required by application developers. Speedups of up to $30$x and $293$x are respectively achieved on an Intel Xeon CPU and NVIDIA Tesla K40 GPU, compared to a sequential CPU implementation. The Xcelerit platform implementation is further shown to be equivalent in performance to a low-level CUDA version. Overall, we are able to reduce the entire calibration process time of the sequential implementation from 6,189 seconds to 183.8 and 17.8 seconds on the CPU and GPU respectively without requiring the developer to reimplement in low-level high performance computing frameworks.


Multiple Time Scales Stochastic Volatility Modeling Method in Stochastic Local Volatility Model Calibration

Multiple Time Scales Stochastic Volatility Modeling Method in Stochastic Local Volatility Model Calibration
Author: Fan Wang
Publisher:
Total Pages: 112
Release: 2013
Genre:
ISBN: 9781303065750

Download Multiple Time Scales Stochastic Volatility Modeling Method in Stochastic Local Volatility Model Calibration Book in PDF, ePub and Kindle

In this thesis we study carefully the stochastic local volatility (SLV) model for pricing barrier options in foreign exchange or equity market. We first discuss the advantage and disadvantage of popular models such as stochastic volatility and local volatility that have been used for pricing the same products, then introduce the necessities to build a hybrid SLV model. We classified the calibration process of SLV model into two major parts according to parameters' different nature, and point out the slowness of the calibration procedure is mainly caused by solving the lever-age surface from Kolmogorov forward equation via the iteration method. Our major contribution is to apply the fast mean reversion volatility modeling technique and singular/regular perturbation analysis developed by Fouque, Papanicolaou, Sircar and Sølna in [24, 27, 26] to the forward equation, which gives a starting point which is proved to be close to the true solution, so that the iteration time is significantly reduced. Besides, we developed target functions specifically designed for processing exotic option quotes and give suitable numerical methods for each step of the calibration.


Deep Calibration of Rough Stochastic Volatility Models

Deep Calibration of Rough Stochastic Volatility Models
Author: Christian Bayer
Publisher:
Total Pages:
Release: 2018
Genre:
ISBN:

Download Deep Calibration of Rough Stochastic Volatility Models Book in PDF, ePub and Kindle

Sparked by Alòs, León und Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson und Rosenbaum (2018), so-called rough stochastic volatility models such as the rough Bergomi model by Bayer, Friz und Gatheral (2016) constitute the latest evolution in option price modeling. Unlike standard bivariate diffusion models such as Heston (1993), these non-Markovian models with fractional volatility drivers allow to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. Standard model calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, rendering calibration of many (rough) stochastic volatility models prohibitively expensive since there the map can often only be approximated by costly Monte Carlo (MC) simulations (Bennedsen, Lunde & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier & Muguruza, 2017). As a remedy, we propose to combine a standard Levenberg-Marquardt calibration routine with neural network regression, replacing expensive MC simulations with cheap forward runs of a neural network trained to approximate the implied volatility map. Numerical experiments confirm the high accuracy and speed of our approach.


Stochastic Volatility Models

Stochastic Volatility Models
Author: Warrick Poklewski-Koziell
Publisher:
Total Pages: 152
Release: 2012
Genre: Stochastic models
ISBN:

Download Stochastic Volatility Models Book in PDF, ePub and Kindle


Local Stochastic Volatility Models

Local Stochastic Volatility Models
Author: Cristian Homescu
Publisher:
Total Pages: 57
Release: 2014
Genre:
ISBN:

Download Local Stochastic Volatility Models Book in PDF, ePub and Kindle

We analyze in detail calibration and pricing performed within the framework of local stochastic volatility LSV models, which have become the industry market standard for FX and equity markets. We present the main arguments for the need of having such models, and address the question whether jumps have to be included. We include a comprehensive literature overview, and focus our exposition on important details related to calibration procedures and option pricing using PDEs or PIDEs derived from LSV models. We describe calibration procedures, with special attention given to usage and solution of corresponding forward Kolmogorov PDE/PIDE, and outline powerful algorithms for estimation of model parameters. Emphasis is placed on presenting practical details regarding the setup and the numerical solution of both forward and backward PDEs/PIDEs obtained from the LSV models. Consequently we discuss specifics (based on our experience and best practices from literature) regarding choice of boundary conditions, construction of nonuniform spatial grids and adaptive temporal grids, selection of efficient and appropriate finite difference schemes (with possible enhancements), etc. We also show how to practically integrate specific features of various types of financial instruments within calibration and pricing settings. We consider all questions and topics identified as most relevant during the selection, calibration and pricing procedures associated with local stochastic volatility models, providing answers (to the best of our knowledge), and present references for deeper understanding and for additional perspectives. In a nutshell, it is our intention to present here an effective roadmap for a successful LSV journey.