Budgeted Online Kernel Classifiers For Large Scale Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Budgeted Online Kernel Classifiers For Large Scale Learning PDF full book. Access full book title Budgeted Online Kernel Classifiers For Large Scale Learning.

Budgeted Online Kernel Classifiers for Large Scale Learning

Budgeted Online Kernel Classifiers for Large Scale Learning
Author: Zhuang Wang
Publisher:
Total Pages: 124
Release: 2010
Genre:
ISBN:

Download Budgeted Online Kernel Classifiers for Large Scale Learning Book in PDF, ePub and Kindle

In the environment where new large scale problems are emerging in various disciplines and pervasive computing applications are becoming more common, there is an urgent need for machine learning algorithms that could process increasing amounts of data using comparatively smaller computing resources in a computational efficient way. Previous research has resulted in many successful learning algorithms that scale linearly or even sub-linearly with sample size and dimension, both in runtime and in space. However, linear or even sub-linear space scaling is often not sufficient, because it implies an unbounded growth in memory with sample size. This clearly opens another challenge: how to learn from large, or practically infinite, data sets or data streams using memory limited resources. Online learning is an important learning scenario in which a potentially unlimited sequence of training examples is presented one example at a time and can only be seen in a single pass. This is opposed to offline learning where the whole collection of training examples is at hand. The objective is to learn an accurate prediction model from the training stream. Upon on repetitively receiving fresh example from stream, typically, online learning algorithms attempt to update the existing model without retraining. The invention of the Support Vector Machines (SVM) attracted a lot of interest in adapting the kernel methods for both offline and online learning. Typical online learning for kernel classifiers consists of observing a stream of training examples and their inclusion as prototypes when specified conditions are met. However, such procedure could result in an unbounded growth in the number of prototypes. In addition to the danger of the exceeding the physical memory, this also implies an unlimited growth in both update and prediction time. To address this issue, in my dissertation I propose a series of kernel-based budgeted online algorithms, which have constant space and constant update and prediction time. This is achieved by maintaining a fixed number of prototypes under the memory budget. Most of the previous works on budgeted online algorithms focus on kernel perceptron. In the first part of the thesis, I review and discuss these existing algorithms and then propose a kernel perceptron algorithm which removes the prototype with the minimal impact on classification accuracy to maintain the budget. This is achieved by dual use of cached prototypes for both model presentation and validation. In the second part, I propose a family of budgeted online algorithms based on the Passive-Aggressive (PA) style. The budget maintenance is achieved by introducing an additional constraint into the original PA optimization problem. A closed-form solution was derived for the budget maintenance and model update. In the third part, I propose a budgeted online SVM algorithm. The proposed algorithm guarantees that the optimal SVM solution is maintained on all the prototype examples at any time. To maximize the accuracy, prototypes are constructed to approximate the data distribution near the decision boundary. In the fourth part, I propose a family of budgeted online algorithms for multi-class classification. The proposed algorithms are the recently proposed SVM training algorithm Pegasos. I prove that the gap between the budgeted Pegasos and the optimal SVM solution directly depends on the average model degradation due to budget maintenance. Following the analysis, I studied greedy multi-class budget maintenance methods based on removal, projection and merging of SVs. In each of these four parts, the proposed algorithms were experimentally evaluated against the state-of-art competitors. The results show that the proposed budgeted online algorithms outperform the competitive algorithm and achieve accuracy comparable to non-budget counterparts while being extremely computationally efficient.


Learning Kernel Classifiers

Learning Kernel Classifiers
Author: Ralf Herbrich
Publisher: MIT Press
Total Pages: 402
Release: 2001-12-07
Genre: Computers
ISBN: 9780262263047

Download Learning Kernel Classifiers Book in PDF, ePub and Kindle

An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.


Learning Kernel Classifiers

Learning Kernel Classifiers
Author: Ralf Herbrich
Publisher: Mit Press
Total Pages: 364
Release: 2002-01
Genre: Computers
ISBN: 9780262083065

Download Learning Kernel Classifiers Book in PDF, ePub and Kindle

An overview of the theory and application of kernel classification methods.


Large-scale Kernel Machines

Large-scale Kernel Machines
Author: Léon Bottou
Publisher: MIT Press
Total Pages: 409
Release: 2007
Genre: Computers
ISBN: 0262026252

Download Large-scale Kernel Machines Book in PDF, ePub and Kindle

Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically. Contributors Léon Bottou, Yoshua Bengio, Stéphane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Gaëlle Loosli, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Gunnar Rätsch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sören Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-Tov


Large-scale Machine Learning Using Kernel Methods

Large-scale Machine Learning Using Kernel Methods
Author: Gang Wu
Publisher:
Total Pages: 300
Release: 2006
Genre:
ISBN: 9780542681530

Download Large-scale Machine Learning Using Kernel Methods Book in PDF, ePub and Kindle

Through theoretical analysis and extensive empirical studies, we show that our proposed approaches are able to perform more effectively, and efficiently, than traditional methods.


Advanced Structured Prediction

Advanced Structured Prediction
Author: Sebastian Nowozin
Publisher: MIT Press
Total Pages: 430
Release: 2014-11-21
Genre: Computers
ISBN: 026232296X

Download Advanced Structured Prediction Book in PDF, ePub and Kindle

An overview of recent work in the field of structured prediction, the building of predictive machine learning models for interrelated and dependent outputs. The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning. Contributors Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sébastien Giguère, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, François Laviolette, Xinghua Lou, Mario Marchand, André F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Průša, Gunnar Rätsch, Amélie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomáš Werner, Alan Yuille, Stanislav Živný


Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases
Author: Massih-Reza Amini
Publisher: Springer Nature
Total Pages: 680
Release: 2023-03-16
Genre: Computers
ISBN: 3031264126

Download Machine Learning and Knowledge Discovery in Databases Book in PDF, ePub and Kindle

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022. The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.


Pattern Recognition Applications and Methods

Pattern Recognition Applications and Methods
Author: Maria De Marsico
Publisher: Springer Nature
Total Pages: 159
Release: 2020-01-24
Genre: Computers
ISBN: 303040014X

Download Pattern Recognition Applications and Methods Book in PDF, ePub and Kindle

This book contains revised and extended versions of selected papers from the 8th International Conference on Pattern Recognition, ICPRAM 2019, held in Prague, Czech Republic, in February 2019. The 25 full papers presented together 52 short papers and 32 poster sessions were carefully reviewed and selected from 138 initial submissions. Contributions describing applications of Pattern Recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance Pattern Recognition methods are especially encouraged.


Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization
Author: Shai Shalev-Shwartz
Publisher: Foundations & Trends
Total Pages: 88
Release: 2012
Genre: Computers
ISBN: 9781601985460

Download Online Learning and Online Convex Optimization Book in PDF, ePub and Kindle

Online Learning and Online Convex Optimization is a modern overview of online learning. Its aim is to provide the reader with a sense of some of the interesting ideas and in particular to underscore the centrality of convexity in deriving efficient online learning algorithms.