Biomaterial Assisted 3d In Vitro Tumor Models From Organoid Towards Cancer Tissue Engineering Approaches PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Biomaterial Assisted 3d In Vitro Tumor Models From Organoid Towards Cancer Tissue Engineering Approaches PDF full book. Access full book title Biomaterial Assisted 3d In Vitro Tumor Models From Organoid Towards Cancer Tissue Engineering Approaches.

Biomaterial-Assisted 3D In Vitro Tumor Models: From Organoid towards Cancer Tissue Engineering Approaches

Biomaterial-Assisted 3D In Vitro Tumor Models: From Organoid towards Cancer Tissue Engineering Approaches
Author: Serena Danti
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN: 9783036568430

Download Biomaterial-Assisted 3D In Vitro Tumor Models: From Organoid towards Cancer Tissue Engineering Approaches Book in PDF, ePub and Kindle

This reprint focuses on fundamental and applied research involving the combination of biomaterials and cancer cells to develop a three-dimensional (3D) tumor microenvironment in vitro, in which carcinogenesis mechanisms can be studied and therapies can be screened. Such models are becoming quite popular within the bioengineering community; thus, many technologies are being tested to obtain the best scaffold for each tumor. In any case, only a tight interaction of bioengineers with cancer biologists and oncologists can make such 3D models progress, with them finally reaching a clinical relevance. On the other hand, the medical community is approaching simpler 3D in vitro models not provided with sufficient extracellular matrix biomimicry, such as spheroids and organoids, which may not be self-exhaustive; therefore, cancer researchers could benefit from closer contact with bioengineers. The aim of this reprint is to help generate shared knowledge and promote strong interdisciplinary collaboration with the ultimate goal of contributing to the acceleration of the discovery and validation of more precise therapies to fight cancer.


Biomaterials for 3D Tumor Modeling

Biomaterials for 3D Tumor Modeling
Author: Subhas C. Kundu
Publisher: Elsevier
Total Pages: 773
Release: 2020-08-22
Genre: Technology & Engineering
ISBN: 012818129X

Download Biomaterials for 3D Tumor Modeling Book in PDF, ePub and Kindle

Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery


Tumor Organoids

Tumor Organoids
Author: Shay Soker
Publisher: Humana Press
Total Pages: 213
Release: 2017-10-20
Genre: Medical
ISBN: 3319605119

Download Tumor Organoids Book in PDF, ePub and Kindle

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.


Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models

Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models
Author: J. Miguel Oliveira
Publisher: Springer Nature
Total Pages: 176
Release: 2020-04-13
Genre: Medical
ISBN: 3030365883

Download Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models Book in PDF, ePub and Kindle

This contributed volume reviews the latest advances on relevant 3D tissue engineered in vitro models of disease making use of biomaterials and microfluidics. The main focus of this book is on advanced biomaterials and microfluidics technologies that have been used in in vitro mimetic 3D models of human diseases and show great promise in revolutionizing personalized medicine. Readers will discover important topics involving biomaterials and microfluidics design, advanced processing techniques, and development and validation of organ- and body-on-a-chip models for bone, liver, and cancer research. An in depth discussion of microfabrication methods for microfluidics development is also provided. This work is edited by two truly multidisciplinary scientists and includes important contributions from well-known experts in their fields. The work is written for both early stage and experienced researchers, and well-established scientists enrolled in the fields of biomaterials, microfluidics, and tissue engineering, and is especially suited to those who wish to become acquainted with the principles and latest developments of in vitro models of diseases, such as professionals working in pharma, medicine, and engineering.


Cancer Immunology and Immunotherapy

Cancer Immunology and Immunotherapy
Author: Glenn Dranoff
Publisher: Springer Science & Business Media
Total Pages: 313
Release: 2011-04-11
Genre: Medical
ISBN: 3642141366

Download Cancer Immunology and Immunotherapy Book in PDF, ePub and Kindle

The interplay between tumors and their immunologic microenvironment is complex, difficult to decipher, but its understanding is of seminal importance for the development of novel prognostic markers and therapeutic strategies. The present review discusses tumor-immune interactions in several human cancers that illustrate various aspects of this complexity and proposes an integrated scheme of the impact of local immune reactions on clinical outcome. Current active immunotherapy trials have shown durable tumor regressions in a fraction of patients. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment.


Frontiers in Tissue Engineering

Frontiers in Tissue Engineering
Author: C.W. Patrick
Publisher: Elsevier
Total Pages: 700
Release: 1998-02-20
Genre: Technology & Engineering
ISBN: 9780080532059

Download Frontiers in Tissue Engineering Book in PDF, ePub and Kindle

Frontiers in Tissue Engineering is a carefully edited compilation of state-of-the-art contributions from an international authorship of experts in the diverse subjects that make up tissue engineering. A broad representation of the medical, scientific, industrial and regulatory community is detailed in the book. The work is an authoritative and comprehensive reference source for scientists and clinicians working in this emerging field. The book is divided into three parts: fundamentals and methods of tissue engineering, tissue engineering applied to specialised tissues, and tissue engineering applied to organs. The text offers many novel approaches, including a detailed coverage of cell-tissue interactions at cellular and molecular levels; cell-tissue surface, biochemical, and mechanical environments; biomaterials; engineering design; tissue-organ function; new approaches to tissue-organ regeneration and replacement of function; ethical considerations of tissue engineering; and government regulation of tissue-engineered products.


Advanced Healthcare Materials

Advanced Healthcare Materials
Author: Ashutosh Tiwari
Publisher: John Wiley & Sons
Total Pages: 421
Release: 2014-05-09
Genre: Technology & Engineering
ISBN: 1118773683

Download Advanced Healthcare Materials Book in PDF, ePub and Kindle

Offers a comprehensive and interdisciplinary view of cutting-edge research on advanced materials for healthcare technology and applications Advanced healthcare materials are attracting strong interest in fundamental as well as applied medical science and technology. This book summarizes the current state of knowledge in the field of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, and up-and-coming bioengineering devices. Advanced Healthcare Materials highlights the key features that enable the design of stimuli-responsive smart nanoparticles, novel biomaterials, and nano/micro devices for either diagnosis or therapy, or both, called theranostics. It also presents the latest advancements in healthcare materials and medical technology. The senior researchers from global knowledge centers have written topics including: State-of-the-art of biomaterials for human health Micro- and nanoparticles and their application in biosensors The role of immunoassays Stimuli-responsive smart nanoparticles Diagnosis and treatment of cancer Advanced materials for biomedical application and drug delivery Nanoparticles for diagnosis and/or treatment of Alzheimers disease Hierarchical modelling of elastic behavior of human dental tissue Biodegradable porous hydrogels Hydrogels in tissue engineering, drug delivery, and wound care Modified natural zeolites Supramolecular hydrogels based on cyclodextrin poly(pseudo)rotaxane Polyhydroxyalkanoate-based biomaterials Biomimetic molecularly imprinted polymers


Nanopharmaceuticals: Principles and Applications Vol. 3

Nanopharmaceuticals: Principles and Applications Vol. 3
Author: Vinod Kumar Yata
Publisher: Springer Nature
Total Pages: 340
Release: 2020-08-19
Genre: Technology & Engineering
ISBN: 3030471209

Download Nanopharmaceuticals: Principles and Applications Vol. 3 Book in PDF, ePub and Kindle

This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.


Fundamentals of Tissue Engineering and Regenerative Medicine

Fundamentals of Tissue Engineering and Regenerative Medicine
Author: Ulrich Meyer
Publisher: Springer Science & Business Media
Total Pages: 1049
Release: 2009-02-11
Genre: Medical
ISBN: 3540777555

Download Fundamentals of Tissue Engineering and Regenerative Medicine Book in PDF, ePub and Kindle

"Fundamentals of Tissue Engineering and Regenerative Medicine" provides a complete overview of the state of the art in tissue engineering and regenerative medicine. Tissue engineering has grown tremendously during the past decade. Advances in genetic medicine and stem cell technology have significantly improved the potential to influence cell and tissue performance, and have recently expanded the field towards regenerative medicine. In recent years a number of approaches have been used routinely in daily clinical practice, others have been introduced in clinical studies, and multitudes are in the preclinical testing phase. Because of these developments, there is a need to provide comprehensive and detailed information for researchers and clinicians on this rapidly expanding field. This book offers, in a single volume, the prerequisites of a comprehensive understanding of tissue engineering and regenerative medicine. The book is conceptualized according to a didactic approach (general aspects: social, economic, and ethical considerations; basic biological aspects of regenerative medicine: stem cell medicine, biomolecules, genetic engineering; classic methods of tissue engineering: cell, tissue, organ culture; biotechnological issues: scaffolds; bioreactors, laboratory work; and an extended medical discipline oriented approach: review of clinical use in the various medical specialties). The content of the book, written in 68 chapters by the world’s leading research and clinical specialists in their discipline, represents therefore the recent intellect, experience, and state of this bio-medical field.