Biologically Inspired Robotics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Biologically Inspired Robotics PDF full book. Access full book title Biologically Inspired Robotics.

Bio-Inspired Robotics

Bio-Inspired Robotics
Author: Toshio Fukuda
Publisher: MDPI
Total Pages: 555
Release: 2018-11-07
Genre: Electronic books
ISBN: 303897045X

Download Bio-Inspired Robotics Book in PDF, ePub and Kindle

This book is a printed edition of the Special Issue "Bio-Inspired Robotics" that was published in Applied Sciences


Biologically Inspired Robotics

Biologically Inspired Robotics
Author: Yunhui Liu
Publisher: CRC Press
Total Pages: 343
Release: 2011-12-21
Genre: Medical
ISBN: 1439854882

Download Biologically Inspired Robotics Book in PDF, ePub and Kindle

Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.


Human Modeling for Bio-Inspired Robotics

Human Modeling for Bio-Inspired Robotics
Author: Jun Ueda
Publisher: Academic Press
Total Pages: 358
Release: 2016-09-02
Genre: Technology & Engineering
ISBN: 0128031522

Download Human Modeling for Bio-Inspired Robotics Book in PDF, ePub and Kindle

Human Modelling for Bio-inspired Robotics: Mechanical Engineering in Assistive Technologies presents the most cutting-edge research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications. Intended to provide researchers both in academia and industry with key content on which to base their developments, this book is organized and written by senior experts in their fields. Human Modeling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies offers a system-level investigation into human mechanisms that inspire the development of assistive technologies and humanoid robotics, including topics in modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation and integration. Each chapter is written by a subject expert and discusses its background, research challenges, key outcomes, application, and future trends. This book will be especially useful for academic and industry researchers in this exciting field, as well as graduate-level students to bring them up to speed with the latest technology in mechanical design and control aspects of the area. Previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing is assumed. Presents the most recent research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications Covers background information and fundamental concepts of human modelling Includes modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation, integration, and safety issues Assumes previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing


Biologically Inspired Intelligent Robots

Biologically Inspired Intelligent Robots
Author: Yoseph Bar-Cohen
Publisher: SPIE Press
Total Pages: 414
Release: 2003
Genre: Computers
ISBN: 9780819448729

Download Biologically Inspired Intelligent Robots Book in PDF, ePub and Kindle

The multidisciplinary issues involved in the development of biologically inspired intelligent robots include materials, actuators, sensors, structures, functionality, control, intelligence, and autonomy. This book reviews various aspects ranging from the biological model to the vision for the future.


Bio-Inspired Artificial Intelligence

Bio-Inspired Artificial Intelligence
Author: Dario Floreano
Publisher: MIT Press
Total Pages: 674
Release: 2023-04-04
Genre: Computers
ISBN: 0262547732

Download Bio-Inspired Artificial Intelligence Book in PDF, ePub and Kindle

A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.


Biologically Inspired Robotics

Biologically Inspired Robotics
Author: Yunhui Liu
Publisher: CRC Press
Total Pages: 340
Release: 2017-12-19
Genre: Medical
ISBN: 1439854971

Download Biologically Inspired Robotics Book in PDF, ePub and Kindle

Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers.


Amphibionics

Amphibionics
Author: Karl Williams
Publisher: McGraw Hill Professional
Total Pages: 386
Release: 2003-04-22
Genre: Technology & Engineering
ISBN: 0071429212

Download Amphibionics Book in PDF, ePub and Kindle

This work provides the hobbyist with detailed mechanical, electronic, and PIC microcontroller knowledge needed to build and program a snake, frog, turtle, and alligator robots. It focuses on the construction of each robot in detail, and then explores the world of slithering, jumping, swimming, and walking robots, and the artificial intelligence needed with these platforms.


Biologically Inspired Robots

Biologically Inspired Robots
Author: Shigeo Hirose
Publisher:
Total Pages: 248
Release: 1993
Genre: Science
ISBN:

Download Biologically Inspired Robots Book in PDF, ePub and Kindle

Living systems often exhibit a fascinating repertoire of phenomena that inspire new engineering solutions to old problems. This book is an account of the author's investigations of the locomotion of snakes and the application of his findings to a new class of robots displaying snake-like motions. The author expertly presents the case that robots in which whole mechanisms move have many potential applications that should be fully exploited in the future when the pertinent technological developments have been achieved. This unique work will be interesting to both robotics engineers and zoologists.


Bio-inspired Flying Robots

Bio-inspired Flying Robots
Author: Jean-Christophe Zufferey
Publisher: EPFL Press
Total Pages: 226
Release: 2008-04-24
Genre: Technology & Engineering
ISBN: 9781420066845

Download Bio-inspired Flying Robots Book in PDF, ePub and Kindle

This book demonstrates how bio-inspiration can lead to fully autonomous flying robots without relying on external aids. Most existing aerial robots fly in open skies, far from obstacles, and rely on external beacons, mainly GPS, to localise and navigate. However, these robots are not able to fly at low altitude or in confined environments, and yet this poses absolutely no difficulty to insects. Indeed, flying insects display efficient flight control capabilities in complex environments despite their limited weight and relatively tiny brain size. From sensor suite to control strategies, the literature on flying insects is reviewed from an engineering perspective in order to extract useful principles that are then applied to the synthesis of artificial indoor flyers. Artificial evolution is also utilised to search for alternative control systems and behaviors that match the constraints of small flying robots. Specifically, the basic sensory modalities of insects, vision, gyroscopes and airflow sense, are applied to develop navigation controllers for indoor flying robots. These robots are capable of mapping sensor information onto actuator commands in real time to maintain altitude, stabilize the course and avoid obstacles. The most prominent result of this novel approach is a 10-gram microflyer capable of fully autonomous operation in an office-sized room using fly-inspired vision, inertial and airspeed sensors. This book is intended for all those interested in autonomous robotics, in academia and industry.


Microbiorobotics

Microbiorobotics
Author: Minjun Kim
Publisher: William Andrew
Total Pages: 329
Release: 2012-03-08
Genre: Science
ISBN: 145577894X

Download Microbiorobotics Book in PDF, ePub and Kindle

Microbiorobotics is a new engineering discipline that inherently involves a multidisciplinary approach (mechanical engineering, cellular biology, mathematical modeling, control systems, synthetic biology, etc). Building robotics system in the micro scale is an engineering task that has resulted in many important applications, ranging from micromanufacturing techniques to cellular manipulation. However, it is also a very challenging engineering task. One of the reasons is because many engineering ideas and principles that are used in larger scales do not scale well to the micro-scale. For example, locomotion principles in a fluid do not function in the same way, and the use of rotational motors is impractical because of the difficulty of building of the required components. Microrobotics is an area that is acknowledged to have massive potential in applications from medicine to manufacturing. This book introduces an inter-disciplinary readership to the toolkit that micro-organisms offer to micro-engineering The design of robots, sensors and actuators faces a range of techology challenges at the micro-scale. This book shows how biological techniques and materials can be used to meet these challenges World-class multi-disciplanry editors and contributors leverage insights from engineering, mathematical modeling and the life sciences – creating a novel toolkit for microrobotics