Benchmarking The Performance Of Bayesian Optimization Across Multiple Experimental Materials Science Domains PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Benchmarking The Performance Of Bayesian Optimization Across Multiple Experimental Materials Science Domains PDF full book. Access full book title Benchmarking The Performance Of Bayesian Optimization Across Multiple Experimental Materials Science Domains.

Benchmarking the Performance of Bayesian Optimization Across Multiple Experimental Materials Science Domains

Benchmarking the Performance of Bayesian Optimization Across Multiple Experimental Materials Science Domains
Author: Qiaohao Liang
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

Download Benchmarking the Performance of Bayesian Optimization Across Multiple Experimental Materials Science Domains Book in PDF, ePub and Kindle

In this work, we benchmark the performance of BO algorithms with a collection of surrogate model and acquisition function pairs across five diverse experimental materials systems, including carbon nanotube polymer blends, silver nanoparticles, lead-halide perovskites, as well as additively manufactured polymer structures and shapes. By defining acceleration and enhancement performance metrics as general materials optimization objectives, we find that for surrogate model selection, Gaussian Process (GP) with anisotropic kernels (automatic relevance detection, ARD) and Random Forests (RF) have comparable performance and both outperform the commonly used GP without ARD. We discuss the implicit distributional assumptions of RF and GP, and the benefits of using GP with anisotropic kernels in detail. We provide practical insights for experimentalists on surrogate model selection of BO during materials optimization campaigns.


Bayesian Optimization for Materials Science

Bayesian Optimization for Materials Science
Author: Daniel Packwood
Publisher: Springer
Total Pages: 51
Release: 2017-10-04
Genre: Technology & Engineering
ISBN: 9811067813

Download Bayesian Optimization for Materials Science Book in PDF, ePub and Kindle

This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science.Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While research in these directions has been reported in high-profile journals, until now there has been no textbook aimed specifically at materials scientists who wish to incorporate Bayesian optimization into their own research. This book will be accessible to researchers and students in materials science who have a basic background in calculus and linear algebra.


Bayesian Optimization with Application to Computer Experiments

Bayesian Optimization with Application to Computer Experiments
Author: Tony Pourmohamad
Publisher: Springer Nature
Total Pages: 113
Release: 2021-10-04
Genre: Mathematics
ISBN: 3030824586

Download Bayesian Optimization with Application to Computer Experiments Book in PDF, ePub and Kindle

This book introduces readers to Bayesian optimization, highlighting advances in the field and showcasing its successful applications to computer experiments. R code is available as online supplementary material for most included examples, so that readers can better comprehend and reproduce methods. Compact and accessible, the volume is broken down into four chapters. Chapter 1 introduces the reader to the topic of computer experiments; it includes a variety of examples across many industries. Chapter 2 focuses on the task of surrogate model building and contains a mix of several different surrogate models that are used in the computer modeling and machine learning communities. Chapter 3 introduces the core concepts of Bayesian optimization and discusses unconstrained optimization. Chapter 4 moves on to constrained optimization, and showcases some of the most novel methods found in the field. This will be a useful companion to researchers and practitioners working with computer experiments and computer modeling. Additionally, readers with a background in machine learning but minimal background in computer experiments will find this book an interesting case study of the applicability of Bayesian optimization outside the realm of machine learning.


The Digital Transformation of Product Formulation

The Digital Transformation of Product Formulation
Author: Alix Schmidt
Publisher: CRC Press
Total Pages: 364
Release: 2024-08-14
Genre: Technology & Engineering
ISBN: 1040100341

Download The Digital Transformation of Product Formulation Book in PDF, ePub and Kindle

In competitive manufacturing industries, organizations embrace product development as a continuous investment strategy since both market share and profit margin stand to benefit. Formulating new or improved products has traditionally involved lengthy and expensive experimentation in laboratory or pilot plant settings. However, recent advancements in areas from data acquisition to analytics are synergizing to transform workflows and increase the pace of research and innovation. The Digital Transformation of Product Formulation offers practical guidance on how to implement data-driven, accelerated product development through concepts, challenges, and applications. In this book, you will read a variety of industrial, academic, and consulting perspectives on how to go about transforming your materials product design from a twentieth-century art to a twenty-first-century science. Presents a futuristic vision for digitally enabled product development, the role of data and predictive modeling, and how to avoid project pitfalls to maximize probability of success Discusses data-driven materials design issues and solutions applicable to a variety of industries, including chemicals, polymers, pharmaceuticals, oil and gas, and food and beverages Addresses common characteristics of experimental datasets, challenges in using this data for predictive modeling, and effective strategies for enhancing a dataset with advanced formulation information and ingredient characterization Covers a wide variety of approaches to developing predictive models on formulation data, including multivariate analysis and machine learning methods Discusses formulation optimization and inverse design as natural extensions to predictive modeling for materials discovery and manufacturing design space definition Features case studies and special topics, including AI-guided retrosynthesis, real-time statistical process monitoring, developing multivariate specifications regions for raw material quality properties, and enabling a digital-savvy and analytics-literate workforce This book provides students and professionals from engineering and science disciplines with practical know-how in data-driven product development in the context of chemical products across the entire modeling lifecycle.


Bayesian Optimization and Data Science

Bayesian Optimization and Data Science
Author: Francesco Archetti
Publisher: Springer Nature
Total Pages: 126
Release: 2019-09-25
Genre: Business & Economics
ISBN: 3030244946

Download Bayesian Optimization and Data Science Book in PDF, ePub and Kindle

This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.


Automating Pareto-optimal Experiment Design Via Efficient Bayesian Optimization

Automating Pareto-optimal Experiment Design Via Efficient Bayesian Optimization
Author: Yunsheng Tian
Publisher:
Total Pages: 72
Release: 2021
Genre:
ISBN:

Download Automating Pareto-optimal Experiment Design Via Efficient Bayesian Optimization Book in PDF, ePub and Kindle

Many science, engineering, and design optimization problems require balancing the trade-offs between several conflicting objectives. The objectives are often blackbox functions whose evaluation requires time-consuming and costly experiments. Multi-objective Bayesian optimization can be used to automate the process of discovering the set of optimal solutions, called Pareto-optimal, while minimizing the number of performed evaluations. To further reduce the evaluation time in the optimization process, testing of several samples in parallel can be deployed. We propose DGEMO, a novel multi-objective Bayesian optimization algorithm that iteratively selects the best batch of samples to be evaluated in parallel. Our algorithm approximates and analyzes a piecewise-continuous Pareto set representation, which allows us to introduce a batch selection strategy that optimizes for both hypervolume improvement and diversity of selected samples in order to efficiently advance promising regions of the Pareto front. Experiments on both synthetic test functions and real-world benchmark problems show that our algorithm predominantly outperforms relevant state-of-the-art methods. The code is available at https://github.com/yunshengtian/DGEMO. In addition, we present AutoOED, an Optimal Experiment Design platform that implements several multi-objective Bayesian optimization algorithms with state-of-the-art performance including DGEMO with an intuitive graphical user interface (GUI). AutoOED is open-source and written in Python. The codebase is modular, facilitating extensions and tailoring the code, serving as a testbed for machine learning researchers to easily develop and evaluate their own multi-objective Bayesian optimization algorithms. Furthermore, a distributed system is integrated to enable parallelized experimental evaluations by independent workers in remote locations. The platform is available at https://autooed.org.


Bayesian Optimization in Action

Bayesian Optimization in Action
Author: Quan Nguyen
Publisher: Simon and Schuster
Total Pages: 422
Release: 2023-11-14
Genre: Computers
ISBN: 1633439070

Download Bayesian Optimization in Action Book in PDF, ePub and Kindle

Bayesian Optimization in Action teaches you how to build Bayesian Optimisation systems from the ground up. This book transforms state-of-the-art research into usable techniques you can easily put into practice. With a range of illustrations, and concrete examples, this book proves that Bayesian Optimisation doesn't have to be difficult!


Bayesian Optimization with Parallel Function Evaluations and Multiple Information Sources

Bayesian Optimization with Parallel Function Evaluations and Multiple Information Sources
Author: Jialei Wang
Publisher:
Total Pages: 258
Release: 2017
Genre:
ISBN:

Download Bayesian Optimization with Parallel Function Evaluations and Multiple Information Sources Book in PDF, ePub and Kindle

Bayesian optimization, a framework for global optimization of expensive-to-evaluate functions, has recently gained popularity in machine learning and global optimization because it can find good feasible points with few function evaluations. In this dissertation, we present novel Bayesian optimization algorithms for problems with parallel function evaluations and multiple information sources, for use in machine learning, biochemistry, and aerospace engineering applications. First, we present a novel algorithm that extends expected improvement, a widely-used Bayesian optimization algorithm that evaluates one point at a time, to settings with parallel function evaluations. This algorithm is based on a new efficient solution method for finding the Bayes-optimal set of points to evaluate next in the context of parallel Bayesian optimization. The author implemented this algorithm in an open source software package co-developed with engineers at Yelp, which was used by Yelp and Netflix for automatic tuning of hyperparameters in machine learning algorithms, and for choosing parameters in online content delivery systems based on evaluations in A/B tests on live traffic. Second, we present a novel parallel Bayesian optimization algorithm with a worst-case approximation guarantee applied to peptide optimization in biochemistry, where we face a large collection of peptides with unknown fitness prior to experimentation, and our goal is to identify peptides with a high score using a small number of experiments. High scoring peptides can be used for biolabeling, targeted drug delivery, and self-assembly of metamaterials. This problem has two novelties: first, unlike traditional Bayesian optimization, where the objective function has a continuous domain and real-valued output well-modeled by a Gaussian Process, this problem has a discrete domain, and involves binary output not well-modeled by a Gaussian process; second, it uses hundreds of parallel function evaluations, which is a level of parallelism too large to be approached with other previously-proposed parallel Bayesian optimization methods. Third, we present a novel Bayesian optimization algorithm for problems in which there are multiple methods or "information sources" for evaluating the objective function, each with its own bias, noise and cost of evaluation. For example, in aerospace engineering, to evaluate an aircraft wing design, different computational models may simulate performance. Our algorithm explores the correlation and model discrepancy of each information source, and optimally chooses the information source to evaluate next and the point at which to evaluate it. We describe how this algorithm can be used in general multi information source optimization problems, and also how a related algorithm can be used in "warm start" problems, where we have results from previous optimizations of closely related objective functions, and we wish to leverage these results to more quickly optimize a new objective function.


Bayesian Optimization

Bayesian Optimization
Author: Roman Garnett
Publisher: Cambridge University Press
Total Pages: 375
Release: 2023-01-31
Genre: Computers
ISBN: 110842578X

Download Bayesian Optimization Book in PDF, ePub and Kindle

A comprehensive introduction to Bayesian optimization that starts from scratch and carefully develops all the key ideas along the way.


Bayesian Hyperparameter Optimization

Bayesian Hyperparameter Optimization
Author: Julien-Charles Lévesque
Publisher:
Total Pages: 114
Release: 2018
Genre:
ISBN:

Download Bayesian Hyperparameter Optimization Book in PDF, ePub and Kindle

In this thesis, we consider the analysis and extension of Bayesian hyperparameter optimization methodology to various problems related to supervised machine learning. The contributions of the thesis are attached to 1) the overestimation of the generalization accuracy of hyperparameters and models resulting from Bayesian optimization, 2) an application of Bayesian optimization to ensemble learning, and 3) the optimization of spaces with a conditional structure such as found in automatic machine learning (AutoML) problems. Generally, machine learning algorithms have some free parameters, called hyperparameters, allowing to regulate or modify these algorithms' behaviour. For the longest time, hyperparameters were tuned by hand or with exhaustive search algorithms. Recent work highlighted the conceptual advantages in optimizing hyperparameters with more rational methods, such as Bayesian optimization. Bayesian optimization is a very versatile framework for the optimization of unknown and non-derivable functions, grounded strongly in probabilistic modelling and uncertainty estimation, and we adopt it for the work in this thesis. We first briefly introduce Bayesian optimization with Gaussian processes (GP) and describe its application to hyperparameter optimization. Next, original contributions are presented on the dangers of overfitting during hyperparameter optimization, where the optimization ends up learning the validation folds. We show that there is indeed overfitting during the optimization of hyperparameters, even with cross-validation strategies, and that it can be reduced by methods such as a reshuffling of the training and validation splits at every iteration of the optimization. Another promising method is demonstrated in the use of a GP's posterior mean for the selection of final hyperparameters, rather than directly returning the model with the minimal crossvalidation error. Both suggested approaches are demonstrated to deliver significant improvements in the generalization accuracy of the final selected model on a benchmark of 118 datasets. The next contributions are provided by an application of Bayesian hyperparameter optimization for ensemble learning. Stacking methods have been exploited for some time to combine multiple classifiers in a meta classifier system. Those can be applied to the end result of a Bayesian hyperparameter optimization pipeline by keeping the best classifiers and combining them at the end. Our Bayesian ensemble optimization method consists in a modification of the Bayesian optimization pipeline to search for the best hyperparameters to use for an ensemble, which is different from optimizing hyperparameters for the performance of a single model. The approach has the advantage of not requiring the training of more models than a regular Bayesian hyperparameter optimization. Experiments show the potential of the suggested approach on three different search spaces and many datasets. The last contributions are related to the optimization of more complex hyperparameter spaces, namely spaces that contain a structure of conditionality. Conditions arise naturally in hyperparameter optimization when one defines a model with multiple components - certain hyperparameters then only need to be specified if their parent component is activated. One example of such a space is the combined algorithm selection and hyperparameter optimization, now better known as AutoML, where the objective is to choose the base model and optimize its hyperparameters. We thus highlight techniques and propose new kernels for GPs that handle structure in such spaces in a principled way. Contributions are also supported by experimental evaluation on many datasets. Overall, the thesis regroups several works directly related to Bayesian hyperparameter optimization. The thesis showcases novel ways to apply Bayesian optimization for ensemble learning, as well as methodologies to reduce overfitting or optimize more complex spaces.