Behaviour Of Gfrp Reinforced Concrete Columns Under Combined Axial Load And Flexure PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Behaviour Of Gfrp Reinforced Concrete Columns Under Combined Axial Load And Flexure PDF full book. Access full book title Behaviour Of Gfrp Reinforced Concrete Columns Under Combined Axial Load And Flexure.

Alternative Materials for the Reinforcement and Prestressing of Concrete

Alternative Materials for the Reinforcement and Prestressing of Concrete
Author: J.L. Clarke
Publisher: CRC Press
Total Pages: 216
Release: 2003-09-02
Genre: Technology & Engineering
ISBN: 0203487672

Download Alternative Materials for the Reinforcement and Prestressing of Concrete Book in PDF, ePub and Kindle

Corrosion of steel reinforcement in concrete is a major problem, with serious implications for structural integrity and durability particularly for bridges and marine structures. This new book provides a thorough overview of recent developments and applications in this area. It examines the durability, strength and suitability of alternative materials.


Behavior of Circular Concrete Columns Reinforced with FRP Bars and Stirrups

Behavior of Circular Concrete Columns Reinforced with FRP Bars and Stirrups
Author: Mohammad Afifi
Publisher:
Total Pages: 237
Release: 2013
Genre:
ISBN:

Download Behavior of Circular Concrete Columns Reinforced with FRP Bars and Stirrups Book in PDF, ePub and Kindle

The behavior of concrete members reinforced with fiber reinforced polymer (FRP) bars has been the focus of many studies in recent years. Nowadays, several codes and design guidelines are available for the design of concrete structures reinforced with FRP bars under flexural and shear loads. Meanwhile, limited research work has been conducted to examine the axial behavior of reinforced concrete (RC) columns with FRP bars. Due to a lack of research investigating the axial behavior of FRP reinforced concrete columns, North American codes and design guidelines do not recommend using FRP bars as longitudinal reinforcement in columns to resist compressive stresses. This dissertation aims at evaluating the axial performance of RC compression members reinforced with glass FRP (GFRP) and carbon FRP (CFRP) bars and stirrups through experimental and analytical investigations. A total of twenty seven full scale circular RC specimens were fabricated and tested experimentally under concentric axial load. The 300 mm diameter columns were designed according to CAN/CSA S806-12 code requirements. The specimens were divided to three series; series I contains three reference columns; one plain concrete and 2 specimens reinforced with steel reinforcement. Series II contains 12 specimens internally reinforced with GFRP longitudinal bars and transverse GFRP stirrups, while series III includes specimens totally reinforced with CFRP reinforcement. The experimental tests were performed at the structural laboratory, Faculty of Engineering, University of Sherbrooke. The main objective of testing these specimens is to investigate the behavior of circular concrete columns reinforced with GFRP or CFRP longitudinal bars and transverse hoops or spirals reinforcement. Several parameters have been studied; type of reinforcement, longitudinal reinforcement ratio, the volumetric ratios, diameters, and spacing of spiral reinforcement, confinement configuration (spirals versus hoops), and lap length of hoops. The test results of the tested columns were presented and discussed in terms of axial load capacity, mode of failure, concrete, longitudinal, and transverse strains, ductility, load/stress-strain response, and concrete confinement strength through four journal papers presented in this dissertation. Based on the findings of experimental investigation, the GFRP and CFRP RC columns behaved similar to the columns reinforced with steel. It was found that, FRP bars were effective in resisting compression until after crushing of concrete, and contributed on average 8% and 13% of column capacity for GFRP and CFRP RC specimens, respectively. Also, the use of GFRP and CFRP spirals or hoops according to the provisions of CSA S806-12 yielded sufficient restraint against the buckling of the longitudinal FRP bars and provided good confinement of the concrete core in the post-peak stages. The axial deformability (ductility) and confinement efficiency can be better improved by using small FRP spirals with closer spacing rather than larger diameters with greater spacing. It was found that, ignoring the contribution of FRP longitudinal bars in the CAN/CSA S806-12 design equation underestimated the maximum capacity of the tested specimens. Based on this finding, the design equation is modified to accurately predict the ultimate load capacities of FRP RC columns. New factors [alpha][indice inférieur g] and [alpha][indice inférieur c] were introduced in the modified equation to account for the GFRP and CFRP bars compressive strength properties as a function in their ultimate tensile strength. On the other hand, proposed equations and confinement model were presented to predict the axial stress-strain behavior of FRP RC columns confined by FRP spirals or hoops. The model takes into account the effect of many parameters such as; type of reinforcement, longitudinal reinforcement ratio; transverse reinforcement configuration; and the volumetric ratio. The proposed model can be used to evaluate the confining pressure, confined concrete core stress, corresponding concrete strain, and stress-strain relationship. The results of analysis using the proposed confinement model were compared with experimental database of twenty four full-scale circular FRP RC columns. A good agreement has been obtained between the analytical and experimental results. Proposed equations to predict both strength and stress-strain behavior of confined columns by FRP reinforcements demonstrate good correlation with test data obtained from full-scale specimens.


Corrosion of Steel in Concrete

Corrosion of Steel in Concrete
Author: Luca Bertolini
Publisher: John Wiley & Sons
Total Pages: 389
Release: 2013-02-26
Genre: Technology & Engineering
ISBN: 3527651713

Download Corrosion of Steel in Concrete Book in PDF, ePub and Kindle

Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.


Fibre Reinforced Cementitious Composites, Second Edition

Fibre Reinforced Cementitious Composites, Second Edition
Author: Arnon Bentur
Publisher: CRC Press
Total Pages: 625
Release: 2006-11-22
Genre: Technology & Engineering
ISBN: 0203088727

Download Fibre Reinforced Cementitious Composites, Second Edition Book in PDF, ePub and Kindle

Advanced cementitious composites can be designed to have outstanding combinations of strength (five to ten times that of conventional concrete) and energy absorption capacity (up to 1000 times that of plain concrete). This second edition brings together in one volume the latest research developments in this rapidly expanding area. The book is split into two parts. The first part is concerned with the mechanics of fibre reinforced brittle matrices and the implications for cementitious systems. In the second part the authors describe the various types of fibre-cement composites, discussing production processes, mechanical and physical properties, durability and applications. Two new chapters have been added, covering fibre specification and structural applications. Fibre Reinforced Cementitious Composites will be of great interest to practitioners involved in modern concrete technology and will also be of use to academics, researchers and graduate students.


Fiber-reinforced-plastic (FRP) Reinforcement for Concrete Structures

Fiber-reinforced-plastic (FRP) Reinforcement for Concrete Structures
Author: Antonio Nanni
Publisher: Elsevier Publishing Company
Total Pages: 468
Release: 1993
Genre: Technology & Engineering
ISBN:

Download Fiber-reinforced-plastic (FRP) Reinforcement for Concrete Structures Book in PDF, ePub and Kindle

The use of fiber reinforced plastic (FRP) composites for prestressed and non-prestressed concrete reinforcement has developed into a technology with serious and substantial claims for the advancement of construction materials and methods. Research and development is now occurring worldwide. The 20 papers in this volume make a further contribution in advancing knowledge and acceptance of FRP composites for concrete reinforcement. The articles are divided into three parts. Part I introduces FRP reinforcement for concrete structures and describes general material properties and manufacturing meth.


Towards Understanding the Seismic Behaviour of GFRP Confined Concrete Columns

Towards Understanding the Seismic Behaviour of GFRP Confined Concrete Columns
Author: Zahra Kharal
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:

Download Towards Understanding the Seismic Behaviour of GFRP Confined Concrete Columns Book in PDF, ePub and Kindle

Conventional steel reinforced concrete (RC) structures are prone to corrosion, resulting in billions of dollars in damages globally annually. The use of glass-fibre reinforced polymer (GFRP) bars as internal reinforcement is a pre-emptive measure, which offers a feasible and cost-effective solution to building lasting sustainable infrastructure. Despite the many advantages of GFRP, design codes do not recommend its usage in columns primarily due to the lack of test data, especially under seismic loading. This study was undertaken to understand the seismic behaviour of concrete columns confined by GFRP transverse reinforcement. In the experimental program of this study, sixteen square columns with 305x305 mm cross-section and 1470 mm length were constructed and tested under simulated earthquake loading. Fourteen columns were reinforced with GFRP ties and steel longitudinal bars, while two columns contained GFRP ties and GFRP longitudinal bars. The results, in the form of shear vs. tip deflection and moment vs. curvature hysteresis, showed that GFRP ties can significantly enhance the seismic performance of RC columns. Test results also revealed that if appropriate confinement is provided, columns confined by GFRP ties have flexural strength, energy dissipation capacity, ductility and deformability level comparable to steel-RC columns and thus can be used effectively as primary lateral reinforcement. In the analytical phase of the study, an extensive database of FRP confined columns tested under concentric axial compression was compiled. The applicability of various existing confinement models towards the test data was investigated in detail. A new constitutive stress-strain relationship for FRP confined columns was proposed which captured the behaviour considerably better than the available models. A computation program was developed, utilizing the proposed confinement model, to conduct nonlinear analysis of GFRP confined columns subjected to simulated seismic loading. The program predicted the shear vs. tip deflection and moment vs. curvature envelope curves, and the ductility parameters with reasonable accuracy. Lastly, a critical evaluation of seismic design provisions for FRP confinement in CSA-S806 (2012) was carried out. The code provisions were found to be ambiguous and lacking in several aspects. Based on the available test results, modifications to the current code were suggested.