Bayesian Inference For Inverse Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Bayesian Inference For Inverse Problems PDF full book. Access full book title Bayesian Inference For Inverse Problems.

Bayesian Approach to Inverse Problems

Bayesian Approach to Inverse Problems
Author: Jérôme Idier
Publisher: John Wiley & Sons
Total Pages: 322
Release: 2013-03-01
Genre: Mathematics
ISBN: 111862369X

Download Bayesian Approach to Inverse Problems Book in PDF, ePub and Kindle

Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.


Bayesian Inference for Inverse Problems

Bayesian Inference for Inverse Problems
Author: Ali Mohammad-Djafari
Publisher: SPIE-International Society for Optical Engineering
Total Pages: 396
Release: 1998
Genre: Mathematics
ISBN:

Download Bayesian Inference for Inverse Problems Book in PDF, ePub and Kindle


Bayesian Inverse Problems

Bayesian Inverse Problems
Author: Juan Chiachio-Ruano
Publisher: CRC Press
Total Pages: 248
Release: 2021-11-11
Genre: Mathematics
ISBN: 1351869663

Download Bayesian Inverse Problems Book in PDF, ePub and Kindle

This book is devoted to a special class of engineering problems called Bayesian inverse problems. These problems comprise not only the probabilistic Bayesian formulation of engineering problems, but also the associated stochastic simulation methods needed to solve them. Through this book, the reader will learn how this class of methods can be useful to rigorously address a range of engineering problems where empirical data and fundamental knowledge come into play. The book is written for a non-expert audience and it is contributed to by many of the most renowned academic experts in this field.


An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems
Author: Luis Tenorio
Publisher: SIAM
Total Pages: 275
Release: 2017-07-06
Genre: Mathematics
ISBN: 1611974917

Download An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems Book in PDF, ePub and Kindle

Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.


Inverse Problems: Tikhonov Theory And Algorithms

Inverse Problems: Tikhonov Theory And Algorithms
Author: Kazufumi Ito
Publisher: World Scientific
Total Pages: 330
Release: 2014-08-28
Genre: Mathematics
ISBN: 9814596213

Download Inverse Problems: Tikhonov Theory And Algorithms Book in PDF, ePub and Kindle

Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference.The book offers a comprehensive treatment of modern techniques, and seamlessly blends regularization theory with computational methods, which is essential for developing accurate and efficient inversion algorithms for many practical inverse problems.It demonstrates many current developments in the field of computational inversion, such as value function calculus, augmented Tikhonov regularization, multi-parameter Tikhonov regularization, semismooth Newton method, direct sampling method, uncertainty quantification and approximate Bayesian inference. It is written for graduate students and researchers in mathematics, natural science and engineering.


Bayesian Inference for Inverse Problems

Bayesian Inference for Inverse Problems
Author: Ali Mohammad-Djafari
Publisher:
Total Pages: 0
Release: 2018
Genre: Electronic books
ISBN:

Download Bayesian Inference for Inverse Problems Book in PDF, ePub and Kindle

Inverse problems arise everywhere we have indirect measurement. Regularization and Bayesian inference methods are two main approaches to handle inverse problems. Bayesian inference approach is more general and has much more tools for developing efficient methods for difficult problems. In this chapter, first, an overview of the Bayesian parameter estimation is presented, then we see the extension for inverse problems. The main difficulty is the great dimension of unknown quantity and the appropriate choice of the prior law. The second main difficulty is the computational aspects. Different approximate Bayesian computations and in particular the variational Bayesian approximation (VBA) methods are explained in details.


Statistical and Computational Inverse Problems

Statistical and Computational Inverse Problems
Author: Jari Kaipio
Publisher: Springer Science & Business Media
Total Pages: 346
Release: 2006-03-30
Genre: Mathematics
ISBN: 0387271325

Download Statistical and Computational Inverse Problems Book in PDF, ePub and Kindle

This book covers the statistical mechanics approach to computational solution of inverse problems, an innovative area of current research with very promising numerical results. The techniques are applied to a number of real world applications such as limited angle tomography, image deblurring, electical impedance tomography, and biomagnetic inverse problems. Contains detailed examples throughout and includes a chapter on case studies where such methods have been implemented in biomedical engineering.


Large-Scale Inverse Problems and Quantification of Uncertainty

Large-Scale Inverse Problems and Quantification of Uncertainty
Author: Lorenz Biegler
Publisher: John Wiley & Sons
Total Pages: 403
Release: 2011-06-24
Genre: Mathematics
ISBN: 1119957583

Download Large-Scale Inverse Problems and Quantification of Uncertainty Book in PDF, ePub and Kindle

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.


Computationally Efficient Bayesian Inference for Inverse Problems

Computationally Efficient Bayesian Inference for Inverse Problems
Author:
Publisher:
Total Pages: 124
Release: 2007
Genre:
ISBN:

Download Computationally Efficient Bayesian Inference for Inverse Problems Book in PDF, ePub and Kindle

Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.


An Introduction to Bayesian Scientific Computing

An Introduction to Bayesian Scientific Computing
Author: Daniela Calvetti
Publisher: Springer Science & Business Media
Total Pages: 202
Release: 2007-11-20
Genre: Computers
ISBN: 0387733949

Download An Introduction to Bayesian Scientific Computing Book in PDF, ePub and Kindle

This book has been written for undergraduate and graduate students in various disciplines of mathematics. The authors, internationally recognized experts in their field, have developed a superior teaching and learning tool that makes it easy to grasp new concepts and apply them in practice. The book’s highly accessible approach makes it particularly ideal if you want to become acquainted with the Bayesian approach to computational science, but do not need to be fully immersed in detailed statistical analysis.