Autonomous Driving Perception PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Autonomous Driving Perception PDF full book. Access full book title Autonomous Driving Perception.

Autonomous Driving Perception

Autonomous Driving Perception
Author: Rui Fan
Publisher: Springer Nature
Total Pages: 391
Release: 2023-10-06
Genre: Technology & Engineering
ISBN: 981994287X

Download Autonomous Driving Perception Book in PDF, ePub and Kindle

Discover the captivating world of computer vision and deep learning for autonomous driving with our comprehensive and in-depth guide. Immerse yourself in an in-depth exploration of cutting-edge topics, carefully crafted to engage tertiary students and ignite the curiosity of researchers and professionals in the field. From fundamental principles to practical applications, this comprehensive guide offers a gentle introduction, expert evaluations of state-of-the-art methods, and inspiring research directions. With a broad range of topics covered, it is also an invaluable resource for university programs offering computer vision and deep learning courses. This book provides clear and simplified algorithm descriptions, making it easy for beginners to understand the complex concepts. We also include carefully selected problems and examples to help reinforce your learning. Don't miss out on this essential guide to computer vision and deep learning for autonomous driving.


Learning to Drive

Learning to Drive
Author: David Michael Stavens
Publisher: Stanford University
Total Pages: 104
Release: 2011
Genre:
ISBN:

Download Learning to Drive Book in PDF, ePub and Kindle

Every year, 1.2 million people die in automobile accidents and up to 50 million are injured. Many of these deaths are due to driver error and other preventable causes. Autonomous or highly aware cars have the potential to positively impact tens of millions of people. Building an autonomous car is not easy. Although the absolute number of traffic fatalities is tragically large, the failure rate of human driving is actually very small. A human driver makes a fatal mistake once in about 88 million miles. As a co-founding member of the Stanford Racing Team, we have built several relevant prototypes of autonomous cars. These include Stanley, the winner of the 2005 DARPA Grand Challenge and Junior, the car that took second place in the 2007 Urban Challenge. These prototypes demonstrate that autonomous vehicles can be successful in challenging environments. Nevertheless, reliable, cost-effective perception under uncertainty is a major challenge to the deployment of robotic cars in practice. This dissertation presents selected perception technologies for autonomous driving in the context of Stanford's autonomous cars. We consider speed selection in response to terrain conditions, smooth road finding, improved visual feature optimization, and cost effective car detection. Our work does not rely on manual engineering or even supervised machine learning. Rather, the car learns on its own, training itself without human teaching or labeling. We show this "self-supervised" learning often meets or exceeds traditional methods. Furthermore, we feel self-supervised learning is the only approach with the potential to provide the very low failure rates necessary to improve on human driving performance.


Hands-On Vision and Behavior for Self-Driving Cars

Hands-On Vision and Behavior for Self-Driving Cars
Author: Luca Venturi
Publisher: Packt Publishing Ltd
Total Pages: 374
Release: 2020-10-23
Genre: Computers
ISBN: 1800201931

Download Hands-On Vision and Behavior for Self-Driving Cars Book in PDF, ePub and Kindle

A practical guide to learning visual perception for self-driving cars for computer vision and autonomous system engineers Key FeaturesExplore the building blocks of the visual perception system in self-driving carsIdentify objects and lanes to define the boundary of driving surfaces using open-source tools like OpenCV and PythonImprove the object detection and classification capabilities of systems with the help of neural networksBook Description The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field. You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You’ll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller. By the end of this book, you’ll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers. What you will learnUnderstand how to perform camera calibrationBecome well-versed with how lane detection works in self-driving cars using OpenCVExplore behavioral cloning by self-driving in a video-game simulatorGet to grips with using lidarsDiscover how to configure the controls for autonomous vehiclesUse object detection and semantic segmentation to locate lanes, cars, and pedestriansWrite a PID controller to control a self-driving car running in a simulatorWho this book is for This book is for software engineers who are interested in learning about technologies that drive the autonomous car revolution. Although basic knowledge of computer vision and Python programming is required, prior knowledge of advanced deep learning and how to use sensors (lidar) is not needed.


Autonomous Driving

Autonomous Driving
Author: Markus Maurer
Publisher: Springer
Total Pages: 698
Release: 2016-05-21
Genre: Technology & Engineering
ISBN: 3662488477

Download Autonomous Driving Book in PDF, ePub and Kindle

This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the authors demonstrate that these benefits will only be achieved if vehicles have an appropriate safety concept at the heart of their design. Realizing the potential of automated vehicles to reorganize traffic and transform mobility of people and goods requires similar care in the design of vehicles and networks. By covering all of these topics, the book aims to provide a current, comprehensive, and scientifically sound treatment of the emerging field of “autonomous driving".


Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception
Author: Hubmann, Constantin
Publisher: KIT Scientific Publishing
Total Pages: 178
Release: 2021-09-13
Genre: Technology & Engineering
ISBN: 3731510391

Download Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception Book in PDF, ePub and Kindle

This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty.


Learning to Drive

Learning to Drive
Author: David Michael Stavens
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Learning to Drive Book in PDF, ePub and Kindle

Every year, 1.2 million people die in automobile accidents and up to 50 million are injured. Many of these deaths are due to driver error and other preventable causes. Autonomous or highly aware cars have the potential to positively impact tens of millions of people. Building an autonomous car is not easy. Although the absolute number of traffic fatalities is tragically large, the failure rate of human driving is actually very small. A human driver makes a fatal mistake once in about 88 million miles. As a co-founding member of the Stanford Racing Team, we have built several relevant prototypes of autonomous cars. These include Stanley, the winner of the 2005 DARPA Grand Challenge and Junior, the car that took second place in the 2007 Urban Challenge. These prototypes demonstrate that autonomous vehicles can be successful in challenging environments. Nevertheless, reliable, cost-effective perception under uncertainty is a major challenge to the deployment of robotic cars in practice. This dissertation presents selected perception technologies for autonomous driving in the context of Stanford's autonomous cars. We consider speed selection in response to terrain conditions, smooth road finding, improved visual feature optimization, and cost effective car detection. Our work does not rely on manual engineering or even supervised machine learning. Rather, the car learns on its own, training itself without human teaching or labeling. We show this "self-supervised" learning often meets or exceeds traditional methods. Furthermore, we feel self-supervised learning is the only approach with the potential to provide the very low failure rates necessary to improve on human driving performance.


Autonomous Vehicle Technology

Autonomous Vehicle Technology
Author: James M. Anderson
Publisher: Rand Corporation
Total Pages: 215
Release: 2014-01-10
Genre: Transportation
ISBN: 0833084372

Download Autonomous Vehicle Technology Book in PDF, ePub and Kindle

The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.


Creating Autonomous Vehicle Systems

Creating Autonomous Vehicle Systems
Author: Shaoshan Liu
Publisher: Morgan & Claypool Publishers
Total Pages: 285
Release: 2017-10-25
Genre: Computers
ISBN: 1681731673

Download Creating Autonomous Vehicle Systems Book in PDF, ePub and Kindle

This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.


Engineering Autonomous Vehicles and Robots

Engineering Autonomous Vehicles and Robots
Author: Shaoshan Liu
Publisher: John Wiley & Sons
Total Pages: 214
Release: 2020-05-11
Genre: Computers
ISBN: 1119570565

Download Engineering Autonomous Vehicles and Robots Book in PDF, ePub and Kindle

Offers a step-by-step guide to building autonomous vehicles and robots, with source code and accompanying videos The first book of its kind on the detailed steps for creating an autonomous vehicle or robot, this book provides an overview of the technology and introduction of the key elements involved in developing autonomous vehicles, and offers an excellent introduction to the basics for someone new to the topic of autonomous vehicles and the innovative, modular-based engineering approach called DragonFly. Engineering Autonomous Vehicles and Robots: The DragonFly Modular-based Approach covers everything that technical professionals need to know about: CAN bus, chassis, sonars, radars, GNSS, computer vision, localization, perception, motion planning, and more. Particularly, it covers Computer Vision for active perception and localization, as well as mapping and motion planning. The book offers several case studies on the building of an autonomous passenger pod, bus, and vending robot. It features a large amount of supplementary material, including the standard protocol and sample codes for chassis, sonar, and radar. GPSD protocol/NMEA protocol and GPS deployment methods are also provided. Most importantly, readers will learn the philosophy behind the DragonFly modular-based design approach, which empowers readers to design and build their own autonomous vehicles and robots with flexibility and affordability. Offers progressive guidance on building autonomous vehicles and robots Provides detailed steps and codes to create an autonomous machine, at affordable cost, and with a modular approach Written by one of the pioneers in the field building autonomous vehicles Includes case studies, source code, and state-of-the art research results Accompanied by a website with supplementary material, including sample code for chassis/sonar/radar; GPS deployment methods; Vision Calibration methods Engineering Autonomous Vehicles and Robots is an excellent book for students, researchers, and practitioners in the field of autonomous vehicles and robots.