Atomic And Electronic Properties Of 2d Moire Interfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Atomic And Electronic Properties Of 2d Moire Interfaces PDF full book. Access full book title Atomic And Electronic Properties Of 2d Moire Interfaces.

Atomic and Electronic Properties of 2D Moiré Interfaces

Atomic and Electronic Properties of 2D Moiré Interfaces
Author: Astrid Weston
Publisher: Springer Nature
Total Pages: 148
Release: 2022-10-06
Genre: Technology & Engineering
ISBN: 3031120930

Download Atomic and Electronic Properties of 2D Moiré Interfaces Book in PDF, ePub and Kindle

This thesis provides the first atomic length-scale observation of the structural transformation (referred to as lattice reconstruction) that occurs in moiré superlattices of twisted bilayer transition metal dichalcogenides (TMDs) at low (θ 2 ̊) twist angles. Such information is essential for the fundamental understanding of how manipulating the rotational twist-angle between two adjacent 2-dimensional crystals subsequently affects their optical and electrical properties./ppStudies using Scanning transmission electron microscopy (STEM), a powerful tool for atomic-scale imaging, were limited due to the complexity of the (atomically-thin) sample fabrication requirements. This work developed a unique way to selectively cut and re-stack monolayers of TMDs with a controlled rotational twist angle which could then be easily suspended on a TEM grid to meet the needs of the atomically thin sample requirements. The fabrication technique enabled the study of the two common stacking-polytypes including 3R and 2H (using MoS2 and WS2 as the example) as well as their structural evolution with decreasing twist-angle./ppAtomic-scale studies were followed by a comprehensive investigation of their electronic properties using scanning probe microscopy and electrical transport measurements of the artificially-engineered structures. The electronic structure of two common stacking-polytypes (3R and 2H) were strikingly different, as revealed by conductive atomic force microscopy. Further studies focused on the 3R-stacking polytype to reveal room-temperature out-of-plane ferroelectricity using tools such as kelvin probe force microscopy, scanning electron microscopy and electrical transport measurements. This work highlights that the unique intrinsic properties of TMDs (i.e. semiconductors with strongly light-matter interaction) combined with the additional twisted degree-of-freedom has great potential to create atomically thin transistors/LEDs with built-in memory storage functions and will further aid in the development of the next generation of optoelectronics.


Two-Dimensional Electronics and Optoelectronics

Two-Dimensional Electronics and Optoelectronics
Author: Yoke Khin Yap
Publisher: MDPI
Total Pages: 153
Release: 2018-04-03
Genre: Technology & Engineering
ISBN: 3038424927

Download Two-Dimensional Electronics and Optoelectronics Book in PDF, ePub and Kindle

This book is a printed edition of the Special Issue "Two-Dimensional Electronics and Optoelectronics" that was published in Electronics


Engineering Two-dimensional Materials

Engineering Two-dimensional Materials
Author: Madisen A. Holbrook
Publisher:
Total Pages: 252
Release: 2021
Genre:
ISBN:

Download Engineering Two-dimensional Materials Book in PDF, ePub and Kindle

The discovery of graphene and its unprecedented properties inspired an extraordinary increase in research progress, launching an era of two-dimensional (2D) electronic materials. These stable crystalline atomic layers enable the design of ultrathin 2D devices by combining different 2D materials as the foundational components. In order to control the properties of these devices, materials with a variety of electronic properties must be available. In this dissertation, we explore three distinct paths to achieve this goal: expanding the library of 2D materials, post synthesis defect engineering, and proximity engineering of the electrostatic environment. First, we report the MBE synthesis and STM/S characterization of a new 2D insulator, honeycomb structure BeO. In addition to determining the atomic structure and density of states, we used moiré pattern analysis to demonstrate the high crystallinity of the BeO and determined the work function modulation across the moiré pattern. We illustrate that the scalable growth, weak substrate interactions, and long-range crystallinity make honeycomb BeO an attractive candidate for future technological applications. The next focus of this work was defect engineering of monolayer WS2 by UHV annealing. A high concentration of S vacancies was generated by UHV annealing of the WS2, leading to S vacancy defect-defect coupling. Using STM/S we determined that the interaction of nearby S vacancies leads to an increase of deep in-gap states for different divacancy geometries. This indicates that vacancy engineering can be a useful tool to controllably manipulate 2D material electronic properties. Finally, we demonstrate the creation of a nanoscale planar p-n junction within a single monolayer of MoSe2 by modulating the electronic properties of the underlying substrate. By intercalating Se at the interface of the hBN/Ru substrate, the hBN becomes decoupled from the Ru, changing its conductivity and work function. We find that this change in the electronic landscape tunes the band gap of the overlying MoSe2, by screening and shifting the MoSe2 work function. Thus, this dissertation shines a light on the vast opportunities 2D materials provide for exploration of novel approaches to materials engineering, and demonstrates a tool set for manipulating the electronic properties of these fascinating materials


Encyclopedia of Interfacial Chemistry

Encyclopedia of Interfacial Chemistry
Author:
Publisher: Elsevier
Total Pages: 5276
Release: 2018-03-29
Genre: Science
ISBN: 0128098945

Download Encyclopedia of Interfacial Chemistry Book in PDF, ePub and Kindle

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions


Van der Waals Heterostructures

Van der Waals Heterostructures
Author: Zhuo Kang
Publisher: John Wiley & Sons
Total Pages: 340
Release: 2022-12-02
Genre: Technology & Engineering
ISBN: 3527833870

Download Van der Waals Heterostructures Book in PDF, ePub and Kindle

Van der Waals Heterostructures A comprehensive resource systematically detailing the developments and applications of van der Waals heterostructures and devices Van der Waals Heterostructures is essential reading to understand the developments made in van der Waals heterostructures and devices in all aspects, from basic synthesis to physical analysis and heterostructures assembling to devices applications, including demonstrated applications of van der Waals heterostructure on electronics, optoelectronics, and energy conversion, such as solar energy, hydrogen energy, batteries, catalysts, biotechnology, and more. This book starts from an in-depth introduction of van der Waals interactions in layered materials and the forming of mixed-dimensional heterostructures via van der Waals force. It then comprehensively summarizes the synthetic methods, devices building processes and physical mechanism of 2D van der Waals heterostructures, and devices including 2D-2D electronics, 2D-2D optoelectronics, and mixed dimensional van der Waals heterostructures. In Van der Waals Heterostructures, readers can expect to find specific information on: The current library of 2D semiconductors and the current synthesis and performances of 2D semiconductors Controllable synthesis and assemble van der Waals heterostructures, physics of the van der Waals interface, and multi-field coupling effects 2D-2D electronics, 2D-2D optoelectronics, mixed dimensional van der Waals heterostructures, and van der Waals heterostructure applications on energy conversion Insight into future perspectives of the van der Waals heterostructures and devices with the detailed effective role of 2D materials for integrated electrical and electronic equipment


Understanding and Engineering Electronic and Optoelectronic Properties of 2D Materials and Their Interfaces

Understanding and Engineering Electronic and Optoelectronic Properties of 2D Materials and Their Interfaces
Author: Youngwoo Son (Ph. D.)
Publisher:
Total Pages: 143
Release: 2016
Genre:
ISBN:

Download Understanding and Engineering Electronic and Optoelectronic Properties of 2D Materials and Their Interfaces Book in PDF, ePub and Kindle

In the pursuit of further miniaturization beyond Moore's law, tremendous effort has been dedicated to exploring the potential of two-dimensional (2D) materials for nanoscale electronic devices. 2D materials are a group of solid state materials that possess strong in-plane covalent bonds while individual atomic layers are held together by weak van der Waals (vdW) interactions. Hence, their bulk crystals can be exfoliated into few-layer or even atomically thin single-layers via micro-mechanical exfoliation techniques. These materials possess unique and exotic properties due to quantum confinement of importance to future electronics. However, many technical problems need to be solved to realize this goal. For example, as 2D material based devices become smaller down to the nanometer scale, the electrical contacts must also be reduced in scale which creates different characteristics from those of macroscopic counterparts. In addition, there are issues of reliability and stability with devices comprised of such materials. There is a need to understand the electronic and chemical properties of several interfaces that arise in such materials: metal-2D and 2D-2D junctions, for example. To this end, this thesis focuses on understanding nanoscale metal-2D semiconductor (SC) and 2D SC-2D SC junctions exploring: (1) electronic and optoelectronic behavior at the nanoscale junction of metal-MoS2 and dependence on the layer number (thickness), (2) realization of voltage selectable photodiodes based on a lateral in-plane MoS2-WSe2 heterojunctions, and (3) interfacial properties and (opto)electronic characteristics of a phosphorene-MoS2 vertical vdW p-n junction. The first part of this thesis explores the layer number dependent electrical characteristics of the MoS2-metal nanoscale junction using current imaging of MoS2 nanosheets consisting of regions of varying different thicknesses using conductive and photoconductive spectral atomic force microscopy (C- and PCS-AFM). The layer number dependence of the effective barrier was measured, by obtaining consecutive current images while changing bias voltages, showing it to be linear. At the same time, spatially resolved two-dimensional (2D) maps of local electrical properties are generated from simultaneously recorded local current-voltage (IV) data. Furthermore, the layer number dependent spectral photoresponse of MoS2 is investigated, which shows the highest response in single layer (1L) region. The photoresponse decreases for increasing layer number, but increases again between 4L and 1 OL due to increased light absorption. The photoresponse is also strongly dependent on the wavelength of the incident light, showing much higher currents for photon energies that are above the optical bandgap. The photoresponse in forward and reverse biases shows barrier symmetry for 1 L but asymmetry for 2, 3, and 4L, which further indicates a dominant role of the barrier on carrier transport at the junction. The second part of this thesis investigates the spatially resolved transverse electrical properties of the monolayer WSe2 -MoS2 lateral p-n heterostructures at their nanoscale junctions with metals both in the dark and under laser illumination. As in the first part of the thesis, C- and PCS-AFM, versatile tools to conveniently and efficiently interrogate layer-dependent electronic and optoelectronic characteristics in a MoS2 crystal containing regions of different thicknesses, which enables direct characterization and comparison of the different layer regions without the complexities associated with fabricating and testing of different individual field-effect transistor devices, are used for measurements. By performing current imaging using a PtIr-coated conductive tip on an ultrathin nanosheet that includes homogeneous crystals of WSe2 and MoS2 and a lateral junction region in between, many thousands of WSe2/MoS2/the junction-metal contact points form during imaging and directly compare their local properties at the same time under identical experimental conditions with the nanoscale spatial resolution. The third part of this thesis explores a new type of 2D vertical heterostructures that simultaneously possess desirable properties of constituent materials, paving the path for overcoming intrinsic shortcomings of each component material to be used as an active material in nanoelectronic devices. As a first example, a MoS 2-graphene vertical heterostructure is constructed and its charge transfer and photoluminescence (PL) at the interface are investigated. C-AFM and Raman spectroscopy show that there is a significant charge transfer between the two component materials. The PL intensity of monolayer MoS2 is noticeably quenched when in contact with a single layered graphene in comparison to that of a bare monolayer MoS2 crystal. Then, with the acquired understanding of the underlying physics at the 2D vdW heterointerfaces, the possibility of a black phosphorus (BP)-MoS2 vertical heterostructure as an ultrathin channel material for high-performance 2D (opto)electronic devices is studied. CVD-synthesized MoS2 and micromechanically exfoliated BP crystals are stacked together to form a vertical p-n heterostructure. Optical microscopy, AFM images, and Raman spectroscopy data show that the MoS2 thin films can be used as a passivation layer, protecting BP from deteriorating in ambient conditions for extended period of time or under an elevated temperature in an Ar environment. The IV characteristics of FET devices based on the vertical heterostuctures exhibit that the MoS2 layer has limited impact on superior carrier transport properties of the BP in the dark. Upon light illumination, photoconductivity of the BP-MoS2 heterostructure region increased compared to that of the bare BP region of the same flake, mainly due to the fact that a built-in electric field formed at the BP-MoS2 interface facilitates the dissociation of electron-hole pairs generated by light absorption.


Two-Dimensional Transition-Metal Dichalcogenides

Two-Dimensional Transition-Metal Dichalcogenides
Author: Chi Sin Tang
Publisher: John Wiley & Sons
Total Pages: 357
Release: 2023-11-14
Genre: Technology & Engineering
ISBN: 3527350640

Download Two-Dimensional Transition-Metal Dichalcogenides Book in PDF, ePub and Kindle

Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.


Monatomic Two-Dimensional Layers

Monatomic Two-Dimensional Layers
Author: Iwao Matsuda
Publisher: Elsevier
Total Pages: 232
Release: 2018-08-22
Genre: Science
ISBN: 0128141611

Download Monatomic Two-Dimensional Layers Book in PDF, ePub and Kindle

Monatomic Two-Dimensional Layers: Properties, Fabrication and Industrial Applications provides a detailed examination on basic principles and state-of-the-art experimental techniques for monatomic layers on model surfaces, and in operating devices. Both conventional surface science and novel 2D materials science are included. The reader is guided through an introduction to the basic science of the field that is followed by advanced science specific to the system. Characterization techniques, the principles of state-of-the-art instruments for monatomic layers, and topics, including positron diffraction, time-resolved photoemission spectroscopy, surface transport measurements, and operando nanospectroscopy are also covered. Researchers, graduate students and professionals will find this volume invaluable to acquire a deeper knowledge of the basic science, preparation, and experimental characterization techniques for 2D materials. Industrial technicians and operators will find it a useful overview of surface science related methods for fabrication and characterization of 2D materials. Gives comprehensive access to the properties of 2D materials, selected fabrication methods, and advanced characterization tools Discusses structure analysis by diffraction methods and ‘operando’ spectroscopy to provide direct information on device performance for industrial applications Written by authors who developed the techniques and have conducted extensive research on monatomic layers


Modeling, Characterization, and Production of Nanomaterials

Modeling, Characterization, and Production of Nanomaterials
Author: Vinod Tewary
Publisher: Woodhead Publishing
Total Pages: 628
Release: 2022-11-09
Genre: Technology & Engineering
ISBN: 0128199199

Download Modeling, Characterization, and Production of Nanomaterials Book in PDF, ePub and Kindle

Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green’s function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focuses on practical applications and industry needs through a solid outlining of the theoretical background Includes emerging nanomaterials and their applications in spintronics and sensing